Quality Assessment of GNSS, SLR, VLBI, and DORIS Inputs for ITRF2014 and ITRF2020 Using TRF Stacking Methods
2024-02-12
状态已发表
摘要ITRF input data which are integrated by GNSS, SLR, VLBI, DORIS combination centers are considered to be relatively high-quality and accurate solutions. However, when utilizing these inputs, one still needs to identify outliers, rescale inaccurate covariance matrix and evaluate the precision of the observed datum information. To achieve the above-mentioned objectives, we propose a terrestrial reference frame (TRF) stacking approach to establish the single technical reference frameworks for the ITRF2014 and ITRF2020 datasets of all four technologies. As a result, roughly 0.5% or less of the SLR observations are identified as outliers, while the ratio of DORIS, GNSS, and VLBI observations are below 1%, around 2%, and ranging from 1% to 1.2%, respectively. The post-rescaling covariance scale factors are 25.07, 27.25, 18.84, 6.98 for GNSS, SLR, VLBI, and DORIS in ITRF2014 datasets, and 8.95, 14.9, 16.8, 7.78 in ITRF2020 datasets, respectively. It is shown that the consistency between the SLR scale and ITRF has improved, increasing from around -5mm in ITRF2014 datasets to approximately -1mm in ITRF2020 datasets. The scale velocity derived from fitting the VLBI scale parameter series with all epochs in ITRF2020 datasets differs by approximately 0.21mm/year from the velocity obtained by fitting the data up to 2013.75 because of the scale drift of VLBI at around 2013. The decreasing standard deviations of the Polar motion parameter (XPO, YPO) offsets between Stacking TRFs and 14C04 (20C04) indicating an improvement in the precision of polar motion observations for all of the four techniques. From the perspective of the Weighted Root Mean Square in station coordinates, the measurement precision of GNSS, SLR, and DORIS techniques has improved, while VLBI shows no significant change.
关键词ITRF TRF stacking GNSS SLR DORIS VLBI quality assessment space geodesy
语种英语
DOI10.20944/preprints202402.0628.v1
相关网址查看原文
出处Preprints
收录类别PPRN.PPRN
WOS记录号PPRN:88053616
WOS类目Multidisciplinary Sciences
资助项目National Nature Science Foundation of China[12233010] ; null[11903065]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372983
专题物质科学与技术学院
物质科学与技术学院_特聘教授组_黄乘利组
物质科学与技术学院_博士生
通讯作者Huang, Chengli
作者单位
1.Chinese Acad Sci, Shanghai Astron Observ, Shanghai, Peoples R China
2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
3.Chinese Acad Sci, CAS Key Lab Planetary Sci, Shanghai Astron Observ, Shanghai, Peoples R China
4.Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Jin,Huang, Chengli,Lian, Lizhen,et al. Quality Assessment of GNSS, SLR, VLBI, and DORIS Inputs for ITRF2014 and ITRF2020 Using TRF Stacking Methods. 2024.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Jin]的文章
[Huang, Chengli]的文章
[Lian, Lizhen]的文章
百度学术
百度学术中相似的文章
[Zhang, Jin]的文章
[Huang, Chengli]的文章
[Lian, Lizhen]的文章
必应学术
必应学术中相似的文章
[Zhang, Jin]的文章
[Huang, Chengli]的文章
[Lian, Lizhen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.20944@preprints202402.0628.v1.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。