HyperLLaVA: Dynamic Visual and Language Expert Tuning for Multimodal Large Language Models
2024-03-20
状态已发表
摘要

Recent advancements indicate that scaling up Multimodal Large Language Models (MLLMs) effectively enhances performance on downstream multimodal tasks. The prevailing MLLM paradigm, e.g., LLaVA, transforms visual features into text-like tokens using a static vision-language mapper, thereby enabling static LLMs to develop the capability to comprehend visual information through visual instruction tuning. Although promising, the static tuning strategy 1 that shares the same parameters may constrain performance across different downstream multimodal tasks. In light of this, we introduce HyperLLaVA, which involves adaptive tuning of the projector and LLM parameters, in conjunction with a dynamic visual expert and language expert, respectively. These experts are derived from HyperNetworks, which generates adaptive parameter shifts through visual and language guidance, enabling dynamic projector and LLM modeling in two-stage training. Our experiments demonstrate that our solution significantly surpasses LLaVA on existing MLLM benchmarks, including MME, MMBench, SEED-Bench, and LLaVA-Bench. 2.

DOIarXiv:2403.13447
相关网址查看原文
出处Arxiv
WOS记录号PPRN:88213171
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372954
专题信息科学与技术学院_本科生
通讯作者Zhang, Wenqiao
作者单位
1.Zhejiang Univ, Hangzhou, Peoples R China
2.Shanghai Tech Univ, Shanghai, Peoples R China
3.Chongqing Univ, Chongqing, Peoples R China
4.Alibaba Grp, Hangzhou, Peoples R China
5.Harbin Inst Technol, Harbin, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Wenqiao,Lin, Tianwei,Liu, Jiang,et al. HyperLLaVA: Dynamic Visual and Language Expert Tuning for Multimodal Large Language Models. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Wenqiao]的文章
[Lin, Tianwei]的文章
[Liu, Jiang]的文章
百度学术
百度学术中相似的文章
[Zhang, Wenqiao]的文章
[Lin, Tianwei]的文章
[Liu, Jiang]的文章
必应学术
必应学术中相似的文章
[Zhang, Wenqiao]的文章
[Lin, Tianwei]的文章
[Liu, Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。