| |||||||
ShanghaiTech University Knowledge Management System
From Pixels to Graphs: Open-Vocabulary Scene Graph Generation with Vision-Language Models | |
2024-04-24 | |
会议录名称 | ARXIV |
ISSN | 1063-6919 |
发表状态 | 已发表 |
DOI | arXiv:2404.00906 |
摘要 | Scene graph generation (SGG) aims to parse a visual scene into an intermediate graph representation for downstream reasoning tasks. Despite recent advancements, existing methods struggle to generate scene graphs with novel visual relation concepts. To address this challenge, we introduce a new open-vocabulary SGG framework based on sequence generation. Our framework leverages vision-language pre-trained models (VLM) by incorporating an image-to-graph generation paradigm. Specifically, we generate scene graph sequences via image-to-text generation with VLM and then construct scene graphs from these sequences. By doing so, we harness the strong capabilities of VLM for open-vocabulary SGG and seamlessly integrate explicit relational modeling for enhancing the VL tasks. Experimental results demonstrate that our design not only achieves superior performance with an open vocabulary but also enhances downstream vision-language task performance through explicit relation modeling knowledge. |
会议地点 | Seattle, WA, USA |
会议日期 | 16-22 June 2024 |
URL | 查看原文 |
资助项目 | NSFC[ |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | PPRN:88360823 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372923 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_博士生 |
通讯作者 | Li, Rongjie |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Shanghai AI Lab, Shanghai, Peoples R China 3.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Li, Rongjie,Zhang, Songyang,Lin, Dahua,et al. From Pixels to Graphs: Open-Vocabulary Scene Graph Generation with Vision-Language Models[C],2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。