ShanghaiTech University Knowledge Management System
A noise-tolerant, resource-saving probabilistic binary neural network implemented by the SOT-MRAM compute-in-memory system | |
2024-03-28 | |
状态 | 已发表 |
摘要 | We report a spin-orbit torque(SOT) magnetoresistive random-access memory(MRAM)-based probabilistic binary neural network(PBNN) for resource-saving and hardware noise-tolerant computing applications. With the presence of thermal fluctuation, the non-destructive SOT-driven magnetization switching characteristics lead to a random weight matrix with controllable probability distribution. In the meanwhile, the proposed CIM architecture allows for the concurrent execution of the probabilistic vector-matrix multiplication (PVMM) and binarization. Furthermore, leveraging the effectiveness of random binary cells to propagate multi-bit probabilistic information, our SOT-MRAM-based PBNN system achieves a 97.78% classification accuracy under a 7.01% weight variation on the MNIST database through 10 sampling cycles, and the number of bit-level computation operations is reduced by a factor of 6.9 compared to that of the full-precision LeNet-5 network. Our work provides a compelling framework for the design of reliable neural networks tailored to the applications with low power consumption and limited computational resources. |
关键词 | Probabilistic binary neuron network random weight matrix spin-orbit-torque computing-in-memory noise-tolerance |
DOI | arXiv:2403.19374 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:88519965 |
WOS类目 | Computer Science, Information Systems ; Computer Science, Software Engineering ; Engineering, Electrical& Electronic |
资助项目 | National Key R&D Program of China[ |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372912 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_寇煦丰组 信息科学与技术学院_硕士生 |
通讯作者 | Kou, Xufeng |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Beihang Univ, Sch Integrated Circuit Sci & Engn, Beijing 100191, Peoples R China 3.King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia |
推荐引用方式 GB/T 7714 | Gu, Yu,Huang, Puyang,Chen, Tianhao,et al. A noise-tolerant, resource-saving probabilistic binary neural network implemented by the SOT-MRAM compute-in-memory system. 2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。