A noise-tolerant, resource-saving probabilistic binary neural network implemented by the SOT-MRAM compute-in-memory system
2024-03-28
状态已发表
摘要

We report a spin-orbit torque(SOT) magnetoresistive random-access memory(MRAM)-based probabilistic binary neural network(PBNN) for resource-saving and hardware noise-tolerant computing applications. With the presence of thermal fluctuation, the non-destructive SOT-driven magnetization switching characteristics lead to a random weight matrix with controllable probability distribution. In the meanwhile, the proposed CIM architecture allows for the concurrent execution of the probabilistic vector-matrix multiplication (PVMM) and binarization. Furthermore, leveraging the effectiveness of random binary cells to propagate multi-bit probabilistic information, our SOT-MRAM-based PBNN system achieves a 97.78% classification accuracy under a 7.01% weight variation on the MNIST database through 10 sampling cycles, and the number of bit-level computation operations is reduced by a factor of 6.9 compared to that of the full-precision LeNet-5 network. Our work provides a compelling framework for the design of reliable neural networks tailored to the applications with low power consumption and limited computational resources.

关键词Probabilistic binary neuron network random weight matrix spin-orbit-torque computing-in-memory noise-tolerance
DOIarXiv:2403.19374
相关网址查看原文
出处Arxiv
WOS记录号PPRN:88519965
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Engineering, Electrical& Electronic
资助项目National Key R&D Program of China[
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372912
专题信息科学与技术学院
信息科学与技术学院_PI研究组_寇煦丰组
信息科学与技术学院_硕士生
通讯作者Kou, Xufeng
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Beihang Univ, Sch Integrated Circuit Sci & Engn, Beijing 100191, Peoples R China
3.King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
推荐引用方式
GB/T 7714
Gu, Yu,Huang, Puyang,Chen, Tianhao,et al. A noise-tolerant, resource-saving probabilistic binary neural network implemented by the SOT-MRAM compute-in-memory system. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gu, Yu]的文章
[Huang, Puyang]的文章
[Chen, Tianhao]的文章
百度学术
百度学术中相似的文章
[Gu, Yu]的文章
[Huang, Puyang]的文章
[Chen, Tianhao]的文章
必应学术
必应学术中相似的文章
[Gu, Yu]的文章
[Huang, Puyang]的文章
[Chen, Tianhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。