消息
×
loading..
The devil is in the object boundary: towards annotation-free instance segmentation using Foundation Models
2024-04-18
状态已发表
摘要

Foundation models, pre -trained on a large amount of data have demonstrated impressive zero -shot capabilities in various downstream tasks. However, in object detection and instance segmentation, two fundamental computer vision tasks heavily reliant on extensive human annotations, foundation models such as SAM and DINO struggle to achieve satisfactory performance. In this study, we reveal that the devil is in the object boundary, i.e., these foundation models fail to discern boundaries between individual objects. For the first time, we probe that CLIP, which has never accessed any instance -level annotations, can provide a highly beneficial and strong instance -level boundary prior in the clustering results of its particular intermediate layer. Following this surprising observation, we propose Zip which Zips up CLip and SAM in a novel classification -first -then -discovery pipeline, enabling annotation -free, complex -scene -capable, open -vocabulary object detection and instance segmentation. Our Zip significantly boosts SAM’s mask AP on COCO dataset by 12.5% and establishes state-of-the-art performance in various settings, including training -free, self -training, and label -efficient finetuning. Furthermore, annotation -free Zip even achieves comparable performance to the best -performing open -vocabulary object detecters using base annotations.

DOIarXiv:2404.11957
相关网址查看原文
出处Arxiv
WOS记录号PPRN:88565818
WOS类目Computer Science, Software Engineering
资助项目National Natural Science Foundation of China[62206174]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372900
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_杨思蓓组
作者单位
ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Shi, Cheng,Yang, Sibei. The devil is in the object boundary: towards annotation-free instance segmentation using Foundation Models. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shi, Cheng]的文章
[Yang, Sibei]的文章
百度学术
百度学术中相似的文章
[Shi, Cheng]的文章
[Yang, Sibei]的文章
必应学术
必应学术中相似的文章
[Shi, Cheng]的文章
[Yang, Sibei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。