Multi-task reconstruction network for synthetic diffusion kurtosis imaging: Predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer
2024-05-01
发表期刊EUROPEAN JOURNAL OF RADIOLOGY (IF:3.2[JCR-2023],3.4[5-Year])
ISSN0720-048X
EISSN1872-7727
卷号174
发表状态已发表
DOI10.1016/j.ejrad.2024.111402
摘要

Purpose: To assess the feasibility and clinical value of synthetic diffusion kurtosis imaging (DKI) generated from diffusion weighted imaging (DWI) through multi-task reconstruction network (MTR-Net) for tumor response prediction in patients with locally advanced rectal cancer (LARC). Methods: In this retrospective study, 120 eligible patients with LARC were enrolled and randomly divided into training and testing datasets with a 7:3 ratio. The MTR-Net was developed for reconstructing Dapp and Kapp images from apparent diffusion coefficient (ADC) images. Tumor regions were manually segmented on both true and synthetic DKI images. The synthetic image quality and manual segmentation agreement were quantitatively assessed. The support vector machine (SVM) classifier was used to construct radiomics models based on the true and synthetic DKI images for pathological complete response (pCR) prediction. The prediction performance for the models was evaluated by the receiver operating characteristic (ROC) curve analysis. Results: The mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) for tumor regions were 0.212, 24.278, and 0.853, respectively, for the synthetic Dapp images and 0.516, 24.883, and 0.804, respectively, for the synthetic Kapp images. The Dice similarity coefficient (DSC), positive predictive value (PPV), sensitivity (SEN), and Hausdorff distance (HD) for the manually segmented tumor regions were 0.786, 0.844, 0.755, and 0.582, respectively. For predicting pCR, the true and synthetic DKIbased radiomics models achieved area under the curve (AUC) values of 0.825 and 0.807 in the testing datasets, respectively. Conclusions: Generating synthetic DKI images from DWI images using MTR-Net is feasible, and the efficiency of synthetic DKI images in predicting pCR is comparable to that of true DKI images.

关键词Rectal cancer Deep learning Diffusion kurtosis imaging Image synthesis Pathological complete response
URL查看原文
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[82271946] ; null[82001776]
WOS研究方向Radiology, Nuclear Medicine & Medical Imaging
WOS类目Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001202519300001
出版者ELSEVIER IRELAND LTD
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372826
专题生物医学工程学院
信息科学与技术学院_硕士生
通讯作者Sun, Yiqun; Tong, Tong; Gu, Yajia
作者单位
1.Fudan Univ, Dept Radiol, Shanghai Canc Ctr, 270,Dongan Rd, Shanghai 200032, Peoples R China
2.Shanghai Key Lab Radiat Oncol, Shanghai 200032, Peoples R China
3.City Univ Hong Kong, Dept Biomed Engn, Hong Kong 999077, Peoples R China
4.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
5.Siemens Shenzhen Magnet Resonance Ltd, MR Applicat Dev, Shenzhen 518057, Peoples R China
推荐引用方式
GB/T 7714
Ma, Qiong,Liu, Zonglin,Zhang, Jiadong,et al. Multi-task reconstruction network for synthetic diffusion kurtosis imaging: Predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer[J]. EUROPEAN JOURNAL OF RADIOLOGY,2024,174.
APA Ma, Qiong.,Liu, Zonglin.,Zhang, Jiadong.,Fu, Caixia.,Li, Rong.,...&Gu, Yajia.(2024).Multi-task reconstruction network for synthetic diffusion kurtosis imaging: Predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer.EUROPEAN JOURNAL OF RADIOLOGY,174.
MLA Ma, Qiong,et al."Multi-task reconstruction network for synthetic diffusion kurtosis imaging: Predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer".EUROPEAN JOURNAL OF RADIOLOGY 174(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ma, Qiong]的文章
[Liu, Zonglin]的文章
[Zhang, Jiadong]的文章
百度学术
百度学术中相似的文章
[Ma, Qiong]的文章
[Liu, Zonglin]的文章
[Zhang, Jiadong]的文章
必应学术
必应学术中相似的文章
[Ma, Qiong]的文章
[Liu, Zonglin]的文章
[Zhang, Jiadong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。