| |||||||
ShanghaiTech University Knowledge Management System
Sinogram Fidelity Network For Metal Artifact Reduction (SFNet) | |
2023 | |
会议录名称 | 65TH ANNUAL MEETING & EXHIBITION OF THE AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE (AAPM)
![]() |
发表状态 | 正式接收 |
摘要 | Purpose: The metal artifacts in the CT image detrimentally affect clinical diagnosis. The dual-domain (sinogram domain and image domain) networks have shown great potentials in reducing metal artifacts. The goal of this study is to develop a dual-domain deep learning network to reduce undesirable metal artifacts in CT.
Methods: The proposed deep learning method leverage information from dual domains and is embedded in an iterative framework. In each iteration, the metal-trace corrupted sinogram is first passed through the sinogram domain network to receive corrected sinogram output, then the output sinogram is FBP reconstructed to receive its corresponding image, and finally this image is enhanced by another network in image domain. The iterative number is 10. The sinogram domain network uses a prior sinogram, which is generated in advance by a prior network. In addition, the output sinogram from the sinogram network is further optimized by a sinogram domain fidelity module (SDFM). The proposed network is carefully trained using the public clinical dataset (DeepLesion) and its performance is evaluated both qualitatively and quantitatively. Results: Compared to the state-of-the-art methods, the proposed method achieves improved metal artifact correction. The PSNR and SSIM is improved by 10.7% and 4%, respectively. The visual comparison demonstrates that our method can recover the image structure even with sever metal artifacts. In addition, the proposed model preserves small structures and avoids secondary artifacts. Conclusion: Preliminary results suggest that the proposed network can achieve significantly better performance in metal artifact correction in CT. |
会议录编者/会议主办者 | Medical Physics |
会议地点 | Houston, USA |
语种 | 英语 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372804 |
专题 | 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_曹国华组 |
通讯作者 | Guohua Cao |
作者单位 | ShanghaiTech University, Shanghai, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Huamin Wang,Zhe Wang,Shuo Yang,et al. Sinogram Fidelity Network For Metal Artifact Reduction (SFNet)[C]//Medical Physics,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
AAPM pre .mp4(57727KB) | 影音 | 限制开放 | ODC BY | 请求全文 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Huamin Wang]的文章 |
[Zhe Wang]的文章 |
[Shuo Yang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Huamin Wang]的文章 |
[Zhe Wang]的文章 |
[Shuo Yang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Huamin Wang]的文章 |
[Zhe Wang]的文章 |
[Shuo Yang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。