A FEATURE-GUIDED DUAL-DOMAIN NETWORK FOR CT METAL ARTIFACT REDUCTION
2024
会议录名称21ST IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
发表状态已发表
DOI10.1109/ISBI56570.2024.10635638
摘要Metal artifact reduction (MAR) in CT is a classical problem. Recently, deep learning-based (DL) methods have achieved promising results for MAR tasks, especially those methods based on dual-domain networks. However, current dual-domain networks seldom employ the inherent features of metal artifact during MAR, leaving room for further improvements. Here, we propose a dual-domain network guided by inherent metal artifact characteristics for MAR. Our method utilizes a feature extractor to obtain several artifact priors. Then, those priors were employed to guide a prior network to generate an accurate prior sinogram, which can subsequently guide the following dual-domain network. Our experimental results demonstrate the promise of the artifact feature-guided dual-domain network for the MAR in CT.
会议录编者/会议主办者AI2D Center ; et al. ; Therapanacea ; Thermo Fisher Scientific ; United Imaging Intelligence ; Verasonics
关键词Computer vision Feature extraction 'current Classical problems CT Deep learning Dual domain Feature extractor Learning-based methods Metal artifact feature Metal artifact reduction Metal artifacts
会议名称21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
会议地点Athens, Greece
会议日期27-30 May 2024
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20243717024495
EI主题词Deep learning
EISSN1945-8452
EI分类号1101.2 ; 1101.2.1 ; 1106.8
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372803
专题信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_曹国华组
通讯作者Yang Lv; Guohua Cao
作者单位
1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
2.United Imaging Healthcare Co., Ltd., Shanghai, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Huamin Wang,Zhe Wang,Shuo Yang,et al. A FEATURE-GUIDED DUAL-DOMAIN NETWORK FOR CT METAL ARTIFACT REDUCTION[C]//AI2D Center, et al., Therapanacea, Thermo Fisher Scientific, United Imaging Intelligence, Verasonics:IEEE Computer Society,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huamin Wang]的文章
[Zhe Wang]的文章
[Shuo Yang]的文章
百度学术
百度学术中相似的文章
[Huamin Wang]的文章
[Zhe Wang]的文章
[Shuo Yang]的文章
必应学术
必应学术中相似的文章
[Huamin Wang]的文章
[Zhe Wang]的文章
[Shuo Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。