ShanghaiTech University Knowledge Management System
A FEATURE-GUIDED DUAL-DOMAIN NETWORK FOR CT METAL ARTIFACT REDUCTION | |
2024 | |
会议录名称 | 21ST IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
![]() |
ISSN | 1945-7928 |
发表状态 | 已发表 |
DOI | 10.1109/ISBI56570.2024.10635638 |
摘要 | Metal artifact reduction (MAR) in CT is a classical problem. Recently, deep learning-based (DL) methods have achieved promising results for MAR tasks, especially those methods based on dual-domain networks. However, current dual-domain networks seldom employ the inherent features of metal artifact during MAR, leaving room for further improvements. Here, we propose a dual-domain network guided by inherent metal artifact characteristics for MAR. Our method utilizes a feature extractor to obtain several artifact priors. Then, those priors were employed to guide a prior network to generate an accurate prior sinogram, which can subsequently guide the following dual-domain network. Our experimental results demonstrate the promise of the artifact feature-guided dual-domain network for the MAR in CT. |
会议录编者/会议主办者 | AI2D Center ; et al. ; Therapanacea ; Thermo Fisher Scientific ; United Imaging Intelligence ; Verasonics |
关键词 | Computer vision Feature extraction 'current Classical problems CT Deep learning Dual domain Feature extractor Learning-based methods Metal artifact feature Metal artifact reduction Metal artifacts |
会议名称 | 21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 |
会议地点 | Athens, Greece |
会议日期 | 27-30 May 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20243717024495 |
EI主题词 | Deep learning |
EISSN | 1945-8452 |
EI分类号 | 1101.2 ; 1101.2.1 ; 1106.8 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372803 |
专题 | 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_曹国华组 |
通讯作者 | Yang Lv; Guohua Cao |
作者单位 | 1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China 2.United Imaging Healthcare Co., Ltd., Shanghai, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Huamin Wang,Zhe Wang,Shuo Yang,et al. A FEATURE-GUIDED DUAL-DOMAIN NETWORK FOR CT METAL ARTIFACT REDUCTION[C]//AI2D Center, et al., Therapanacea, Thermo Fisher Scientific, United Imaging Intelligence, Verasonics:IEEE Computer Society,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Huamin Wang]的文章 |
[Zhe Wang]的文章 |
[Shuo Yang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Huamin Wang]的文章 |
[Zhe Wang]的文章 |
[Shuo Yang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Huamin Wang]的文章 |
[Zhe Wang]的文章 |
[Shuo Yang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。