Robust gas species and concentration monitoring via cross-talk transformer with snapshot infrared spectral imager
2024-08-15
发表期刊SENSORS AND ACTUATORS B: CHEMICAL (IF:8.0[JCR-2023],7.0[5-Year])
ISSN0925-4005
EISSN0925-4005
卷号413
发表状态已发表
DOI10.1016/j.snb.2024.135780
摘要

With the rising industrialization, monitoring of chemical gases such as carbon dioxide, methane, and sulfur dioxide has become critical due to their profound impact on the global environment, human health, and industrial development. Recently, the Uncooled Snapshot Infrared Spectrometer (USIRS) has been employed for rapid, long-distance identification and concentration sensing of various gases. However, these uncooled instruments face limitations in gas detection accuracy due to weak signals and a low signal-to-noise ratio. To address these issues, we introduce the Cross-talk Transformer, which leverages the attention mechanism to learn deep correlations between the target gas and the gas spectral library. Furthermore, we have developed a comprehensive radiation transfer model for USIRS to generate substantial data, thereby adequately training the Cross-talk Transformer. Upon validation, our method achieves a recognition accuracy of 98.63% on experimental data for 11 types of chemical gases. In terms of concentration prediction, our approach attains a mean error of 330 ppm for chemical gases with concentrations up to 30,000 ppm. These results highlight the high accuracy and robustness of our method in monitoring gas types and concentrations, demonstrating its potential for industrial monitoring and other applications. © 2024 Elsevier B.V.

关键词Carbon dioxide Crosstalk Signal to noise ratio Sulfur dioxide Concentration monitoring Cross talks Gas concentration Gas concentration predictions Gas recognition Gas species Infrared spectral Radiation transfer model Transformer Uncooled
URL查看原文
收录类别EI ; SCI
语种英语
资助项目The 173 Key Projects of Basic Research[2021173ZD025] ; National Defense Pre-Research Foundation of China during the 14th Five-Year Plan Period[D040107]
WOS研究方向Chemistry ; Electrochemistry ; Instruments & Instrumentation
WOS类目Chemistry, Analytical ; Electrochemistry ; Instruments & Instrumentation
WOS记录号WOS:001233857000001
出版者Elsevier B.V.
EI入藏号20241715975481
EI主题词Gases
EI分类号716.1 Information Theory and Signal Processing ; 804.2 Inorganic Compounds
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/370106
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_王建宇组
信息科学与技术学院_博士生
通讯作者Li, Chunlai
作者单位
1.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai; 200083, China
2.Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou; 310024, China
3.University of Chinese Academy of Sciences, Beijing; 100049, China
4.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China
推荐引用方式
GB/T 7714
Yang, Yang,Wang, Zi,Wang, Pengyu,et al. Robust gas species and concentration monitoring via cross-talk transformer with snapshot infrared spectral imager[J]. SENSORS AND ACTUATORS B: CHEMICAL,2024,413.
APA Yang, Yang.,Wang, Zi.,Wang, Pengyu.,Tang, Guoliang.,Liu, Chengyu.,...&Wang, Jianyu.(2024).Robust gas species and concentration monitoring via cross-talk transformer with snapshot infrared spectral imager.SENSORS AND ACTUATORS B: CHEMICAL,413.
MLA Yang, Yang,et al."Robust gas species and concentration monitoring via cross-talk transformer with snapshot infrared spectral imager".SENSORS AND ACTUATORS B: CHEMICAL 413(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Yang]的文章
[Wang, Zi]的文章
[Wang, Pengyu]的文章
百度学术
百度学术中相似的文章
[Yang, Yang]的文章
[Wang, Zi]的文章
[Wang, Pengyu]的文章
必应学术
必应学术中相似的文章
[Yang, Yang]的文章
[Wang, Zi]的文章
[Wang, Pengyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。