消息
×
loading..
Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes
2024
发表期刊NANO LETTERS (IF:9.6[JCR-2023],10.1[5-Year])
ISSN1530-6984
EISSN1530-6992
卷号24期号:17页码:5292-5300
发表状态已发表
DOI10.1021/acs.nanolett.4c00902
摘要

Understanding the structure-property relationship of lithium-ion conducting solid oxide electrolytes is essential to accelerate their development and commercialization. However, the structural complexity of nonideal materials increases the difficulty of study. Here, we develop an algorithmic framework to understand the effect of microstructure on the properties by linking the microscopic morphology images to their ionic conductivities. We adopt garnet and perovskite polycrystalline oxides as examples and quantify the microscopic morphologies via extracting determined physical parameters from the images. It directly visualizes the effect of physical parameters on their corresponding ionic conductivities. As a result, we can determine the microstructural features of a Li-ion conductor with high ionic conductivity, which can guide the synthesis of highly conductive solid electrolytes. Our work provides a novel approach to understanding the microstructure-property relationship for solid-state ionic materials, showing the potential to extend to other structural/functional ceramics with various physical properties in other fields. © 2024 American Chemical Society.

关键词Garnets Ionic conduction in solids Ionic conductivity Ions Lithium compounds Machine learning Microstructure Perovskite Solid oxide fuel cells (SOFC) Conducting oxides Garnet-type solid electrolyte Ion-conducting Lithium ions Machine-learning Microscopic morphology Microstructure-property relationships Oxide solid electrolytes Physical parameters Structure-properties relationships
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:001241213500001
出版者American Chemical Society
EI入藏号20241715981611
EI主题词Solid electrolytes
EI分类号482.2 Minerals ; 701.1 Electricity: Basic Concepts and Phenomena ; 702.2 Fuel Cells ; 723.4 Artificial Intelligence ; 803 Chemical Agents and Basic Industrial Chemicals ; 951 Materials Science
原始文献类型Article in Press
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/370099
专题物质科学与技术学院
信息科学与技术学院
物质科学与技术学院_PI研究组_于奕组
物质科学与技术学院_PI研究组_刘巍组
信息科学与技术学院_PI研究组_何旭明组
物质科学与技术学院_本科生
物质科学与技术学院_博士生
信息科学与技术学院_本科生
共同第一作者Lin, Xiaoyu
通讯作者Yu, Yi; He, Xuming; Liu, Wei
作者单位
1.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China
2.Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai; 201210, China
3.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China
4.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai; 201210, China
第一作者单位物质科学与技术学院;  上海科技大学
通讯作者单位物质科学与技术学院;  上海科技大学;  信息科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Yue,Lin, Xiaoyu,Zhai, Wenbo,et al. Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes[J]. NANO LETTERS,2024,24(17):5292-5300.
APA Zhang, Yue.,Lin, Xiaoyu.,Zhai, Wenbo.,Shen, Yanran.,Chen, Shaojie.,...&Liu, Wei.(2024).Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes.NANO LETTERS,24(17),5292-5300.
MLA Zhang, Yue,et al."Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes".NANO LETTERS 24.17(2024):5292-5300.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Yue]的文章
[Lin, Xiaoyu]的文章
[Zhai, Wenbo]的文章
百度学术
百度学术中相似的文章
[Zhang, Yue]的文章
[Lin, Xiaoyu]的文章
[Zhai, Wenbo]的文章
必应学术
必应学术中相似的文章
[Zhang, Yue]的文章
[Lin, Xiaoyu]的文章
[Zhai, Wenbo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。