| |||||||
ShanghaiTech University Knowledge Management System
Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes | |
2024 | |
发表期刊 | NANO LETTERS (IF:9.6[JCR-2023],10.1[5-Year]) |
ISSN | 1530-6984 |
EISSN | 1530-6992 |
卷号 | 24期号:17页码:5292-5300 |
发表状态 | 已发表 |
DOI | 10.1021/acs.nanolett.4c00902 |
摘要 | Understanding the structure-property relationship of lithium-ion conducting solid oxide electrolytes is essential to accelerate their development and commercialization. However, the structural complexity of nonideal materials increases the difficulty of study. Here, we develop an algorithmic framework to understand the effect of microstructure on the properties by linking the microscopic morphology images to their ionic conductivities. We adopt garnet and perovskite polycrystalline oxides as examples and quantify the microscopic morphologies via extracting determined physical parameters from the images. It directly visualizes the effect of physical parameters on their corresponding ionic conductivities. As a result, we can determine the microstructural features of a Li-ion conductor with high ionic conductivity, which can guide the synthesis of highly conductive solid electrolytes. Our work provides a novel approach to understanding the microstructure-property relationship for solid-state ionic materials, showing the potential to extend to other structural/functional ceramics with various physical properties in other fields. © 2024 American Chemical Society. |
关键词 | Garnets Ionic conduction in solids Ionic conductivity Ions Lithium compounds Machine learning Microstructure Perovskite Solid oxide fuel cells (SOFC) Conducting oxides Garnet-type solid electrolyte Ion-conducting Lithium ions Machine-learning Microscopic morphology Microstructure-property relationships Oxide solid electrolytes Physical parameters Structure-properties relationships |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
WOS类目 | Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter |
WOS记录号 | WOS:001241213500001 |
出版者 | American Chemical Society |
EI入藏号 | 20241715981611 |
EI主题词 | Solid electrolytes |
EI分类号 | 482.2 Minerals ; 701.1 Electricity: Basic Concepts and Phenomena ; 702.2 Fuel Cells ; 723.4 Artificial Intelligence ; 803 Chemical Agents and Basic Industrial Chemicals ; 951 Materials Science |
原始文献类型 | Article in Press |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/370099 |
专题 | 物质科学与技术学院 信息科学与技术学院 物质科学与技术学院_PI研究组_于奕组 物质科学与技术学院_PI研究组_刘巍组 信息科学与技术学院_PI研究组_何旭明组 物质科学与技术学院_本科生 物质科学与技术学院_博士生 信息科学与技术学院_本科生 |
共同第一作者 | Lin, Xiaoyu |
通讯作者 | Yu, Yi; He, Xuming; Liu, Wei |
作者单位 | 1.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China 2.Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai; 201210, China 3.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China 4.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai; 201210, China |
第一作者单位 | 物质科学与技术学院; 上海科技大学 |
通讯作者单位 | 物质科学与技术学院; 上海科技大学; 信息科学与技术学院 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Yue,Lin, Xiaoyu,Zhai, Wenbo,et al. Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes[J]. NANO LETTERS,2024,24(17):5292-5300. |
APA | Zhang, Yue.,Lin, Xiaoyu.,Zhai, Wenbo.,Shen, Yanran.,Chen, Shaojie.,...&Liu, Wei.(2024).Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes.NANO LETTERS,24(17),5292-5300. |
MLA | Zhang, Yue,et al."Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes".NANO LETTERS 24.17(2024):5292-5300. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。