消息
×
loading..
Learning-based modeling of human-autonomous vehicle interaction for improved safety in mixed-vehicle platooning control
2024-05
发表期刊TRANSPORTATION RESEARCH PART C: EMERGING TECHNOLOGIES (IF:7.6[JCR-2023],9.6[5-Year])
ISSN0968-090X
EISSN1879-2359
卷号162
发表状态已发表
DOI10.1016/j.trc.2024.104600
摘要

The rising presence of autonomous vehicles (AVs) on public roads necessitates the development of advanced control strategies that account for the unpredictable nature of human-driven vehicles (HVs). This study introduces a learning-based method for modeling HV behavior, combining a traditional first-principles approach with a Gaussian process (GP) learning component. This hybrid model enhances the accuracy of velocity predictions and provides measurable uncertainty estimates. We leverage this model to develop a GP-based model predictive control (GP-MPC) strategy to improve safety in mixed vehicle platoons by integrating uncertainty assessments into distance constraints. Comparative simulations between our GP-MPC approach and a conventional model predictive control (MPC) strategy reveal that the GP-MPC ensures safer distancing and more efficient travel within the mixed platoon. By incorporating sparse GP modeling for HVs and a dynamic GP prediction in MPC, we significantly reduce the computation time of GP-MPC, making it only marginally longer than standard MPC and approximately 100 times faster than previous models not employing these techniques. Our findings underscore the effectiveness of learning-based HV modeling in enhancing safety and efficiency in mixed-traffic environments involving AV and HV interactions. © 2024 The Author(s)

关键词Autonomous vehicles Gaussian distribution Gaussian noise (electronic) Learning systems Predictive control systems Uncertainty analysis Autonomous Vehicles Gaussian process models Gaussian Processes Human-autonomous vehicle interaction Mixed vehicle platoon Model-predictive control Modeling uncertainties Predictive control strategy Vehicle interactions Vehicle platoons
URL查看原文
收录类别EI ; SCI
语种英语
WOS研究方向Transportation
WOS类目Transportation Science & Technology
WOS记录号WOS:001223559900001
出版者Elsevier Ltd
EI入藏号20241515882371
EI主题词Model predictive control
EI分类号432 Highway Transportation ; 731.1 Control Systems ; 731.6 Robot Applications ; 922.1 Probability Theory ; 922.2 Mathematical Statistics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/364648
专题信息科学与技术学院_PI研究组_江智浩组
通讯作者Wang, Jie
作者单位
1.Electrical and Computer Engineering Department, University of Waterloo, Waterloo; ON, Canada
2.School of Information Science and Technologies, ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Wang, Jie,Pant, Yash Vardhan,Jiang, Zhihao. Learning-based modeling of human-autonomous vehicle interaction for improved safety in mixed-vehicle platooning control[J]. TRANSPORTATION RESEARCH PART C: EMERGING TECHNOLOGIES,2024,162.
APA Wang, Jie,Pant, Yash Vardhan,&Jiang, Zhihao.(2024).Learning-based modeling of human-autonomous vehicle interaction for improved safety in mixed-vehicle platooning control.TRANSPORTATION RESEARCH PART C: EMERGING TECHNOLOGIES,162.
MLA Wang, Jie,et al."Learning-based modeling of human-autonomous vehicle interaction for improved safety in mixed-vehicle platooning control".TRANSPORTATION RESEARCH PART C: EMERGING TECHNOLOGIES 162(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Jie]的文章
[Pant, Yash Vardhan]的文章
[Jiang, Zhihao]的文章
百度学术
百度学术中相似的文章
[Wang, Jie]的文章
[Pant, Yash Vardhan]的文章
[Jiang, Zhihao]的文章
必应学术
必应学术中相似的文章
[Wang, Jie]的文章
[Pant, Yash Vardhan]的文章
[Jiang, Zhihao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。