| |||||||
ShanghaiTech University Knowledge Management System
Domain-decomposed Bayesian inversion based on local Karhunen-Loève expansions | |
2024-05-01 | |
发表期刊 | JOURNAL OF COMPUTATIONAL PHYSICS (IF:3.8[JCR-2023],4.5[5-Year]) |
ISSN | 0021-9991 |
EISSN | 1090-2716 |
卷号 | 504 |
发表状态 | 已发表 |
DOI | 10.1016/j.jcp.2024.112856 |
摘要 | In many Bayesian inverse problems the goal is to recover a spatially varying random field. Such problems are often computationally challenging especially when the forward model is governed by complex partial differential equations (PDEs). The challenge is particularly severe when the spatial domain is large and the unknown random field needs to be represented by a high-dimensional parameter. In this paper, we present a domain-decomposed method to attack the dimensionality issue and the method decomposes the spatial domain and the parameter domain simultaneously. On each subdomain, a local Karhunen-Loève (KL) expansion is constructed, and a local inversion problem is solved independently in a parallel manner, and more importantly, in a lower-dimensional space. After local posterior samples are generated through conducting Markov chain Monte Carlo (MCMC) simulations on subdomains, a novel projection procedure is developed to effectively reconstruct the global field. In addition, the domain decomposition interface conditions are dealt with an adaptive Gaussian process-based fitting strategy. Numerical examples are provided to demonstrate the performance of the proposed method. © 2024 Elsevier Inc. |
关键词 | Bayesian networks Domain decomposition methods Inference engines Markov processes Monte Carlo methods Numerical methods Bayesian inference Bayesian inversion Domain decompositions Karhunen Loeve Expansion Local karhunen-loeve expansion Markov chain Monte Carlo Markov Chain Monte-Carlo Random fields Spatial domains Subdomain |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[12071291] ; Science and Technology Commission of Shanghai Municipality, China[20JC1414300] ; Natural Science Foundation of Shanghai, China[20ZR1436200] |
WOS研究方向 | Computer Science ; Physics |
WOS类目 | Computer Science, Interdisciplinary Applications ; Physics, Mathematical |
WOS记录号 | WOS:001202510400001 |
出版者 | Academic Press Inc. |
EI入藏号 | 20240915644231 |
EI主题词 | Inverse problems |
EI分类号 | 723.4.1 Expert Systems ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory ; 921.6 Numerical Methods ; 922.1 Probability Theory ; 922.2 Mathematical Statistics |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/364647 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_廖奇峰组 信息科学与技术学院_博士生 |
通讯作者 | Liao, Qifeng |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China 2.School of Mathematics, University of Birmingham, Birmingham; B15 2TT, United Kingdom |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xu, Zhihang,Liao, Qifeng,Li, Jinglai. Domain-decomposed Bayesian inversion based on local Karhunen-Loève expansions[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2024,504. |
APA | Xu, Zhihang,Liao, Qifeng,&Li, Jinglai.(2024).Domain-decomposed Bayesian inversion based on local Karhunen-Loève expansions.JOURNAL OF COMPUTATIONAL PHYSICS,504. |
MLA | Xu, Zhihang,et al."Domain-decomposed Bayesian inversion based on local Karhunen-Loève expansions".JOURNAL OF COMPUTATIONAL PHYSICS 504(2024). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。