| |||||||
ShanghaiTech University Knowledge Management System
Optimization of generative adversarial network based image super-resolution by using image mask | |
其他题名 | 利 用 图 像 掩 膜 优 化 基 于 生 成 对 抗 网 络 的 图 像 超 分 辨 率模 型 |
2023-05 | |
发表期刊 | HE JISHU/NUCLEAR TECHNIQUES |
ISSN | 0253-3219 |
卷号 | 46期号:5页码:93-101 |
发表状态 | 已发表 |
DOI | 10.11835/j.issn.1000-582X.2023.05.010 |
摘要 | Inferring high resolution image from single low resolution (LR) input is ill-posed and deep learning helps to some extent. The latest algorithms take the advantage of the Generative Adversarial Network (GAN) and present photo-realistic results by learning low/high resolution mappings from super resolution datasets. However, training of GANs can be hard and traditional GAN-based architectures often exhibit noise and texture distortion in their super-resolution (SR) results. In this paper, a mask-aided adversarial training strategy for current GAN-based SR frameworks is proposed. During training, mask module helps the discriminator by introducing additional perceptual quality information with generator’s outputs and the ground truth images. In experiment, three current state-of-the-art GAN-based SR models are selected and the mask module is integrated into their adversarial training. The improved mask-aided models yield better results in both quantitative and qualitative benchmarks than the original ones. Mask module only modifies GAN framework and thus is suitable for many GAN-based solutions for further improving the SR perceptual quality. © 2023 Science Press. All rights reserved. |
关键词 | Deep learning Learning algorithms Optical resolving power Textures 'current Deep learning High-resolution images Image masks Image super resolutions Network-based Optimisations Perceptual quality Super resolution algorithms Superresolution |
收录类别 | EI |
语种 | 中文 |
出版者 | Science Press |
EI入藏号 | 20240615512091 |
EI主题词 | Generative adversarial networks |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 741.1 Light/Optics |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/359923 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China; 2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China; 3. University of Chinese Academy of Sciences, Beijing 100049, P. R. China) |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jiang, Qilei,Ma, Yuanxi. Optimization of generative adversarial network based image super-resolution by using image mask[J]. HE JISHU/NUCLEAR TECHNIQUES,2023,46(5):93-101. |
APA | Jiang, Qilei,&Ma, Yuanxi.(2023).Optimization of generative adversarial network based image super-resolution by using image mask.HE JISHU/NUCLEAR TECHNIQUES,46(5),93-101. |
MLA | Jiang, Qilei,et al."Optimization of generative adversarial network based image super-resolution by using image mask".HE JISHU/NUCLEAR TECHNIQUES 46.5(2023):93-101. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jiang, Qilei]的文章 |
[Ma, Yuanxi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jiang, Qilei]的文章 |
[Ma, Yuanxi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jiang, Qilei]的文章 |
[Ma, Yuanxi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。