消息
×
loading..
Optimization of generative adversarial network based image super-resolution by using image mask
其他题名利 用 图 像 掩 膜 优 化 基 于 生 成 对 抗 网 络 的 图 像 超 分 辨 率模 型
2023-05
发表期刊HE JISHU/NUCLEAR TECHNIQUES
ISSN0253-3219
卷号46期号:5页码:93-101
发表状态已发表
DOI10.11835/j.issn.1000-582X.2023.05.010
摘要

Inferring high resolution image from single low resolution (LR) input is ill-posed and deep learning helps to some extent. The latest algorithms take the advantage of the Generative Adversarial Network (GAN) and present photo-realistic results by learning low/high resolution mappings from super resolution datasets. However, training of GANs can be hard and traditional GAN-based architectures often exhibit noise and texture distortion in their super-resolution (SR) results. In this paper, a mask-aided adversarial training strategy for current GAN-based SR frameworks is proposed. During training, mask module helps the discriminator by introducing additional perceptual quality information with generator’s outputs and the ground truth images. In experiment, three current state-of-the-art GAN-based SR models are selected and the mask module is integrated into their adversarial training. The improved mask-aided models yield better results in both quantitative and qualitative benchmarks than the original ones. Mask module only modifies GAN framework and thus is suitable for many GAN-based solutions for further improving the SR perceptual quality. © 2023 Science Press. All rights reserved.

关键词Deep learning Learning algorithms Optical resolving power Textures 'current Deep learning High-resolution images Image masks Image super resolutions Network-based Optimisations Perceptual quality Super resolution algorithms Superresolution
收录类别EI
语种中文
出版者Science Press
EI入藏号20240615512091
EI主题词Generative adversarial networks
EI分类号461.4 Ergonomics and Human Factors Engineering ; 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 741.1 Light/Optics
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/359923
专题信息科学与技术学院
信息科学与技术学院_硕士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China; 2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China; 3. University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jiang, Qilei,Ma, Yuanxi. Optimization of generative adversarial network based image super-resolution by using image mask[J]. HE JISHU/NUCLEAR TECHNIQUES,2023,46(5):93-101.
APA Jiang, Qilei,&Ma, Yuanxi.(2023).Optimization of generative adversarial network based image super-resolution by using image mask.HE JISHU/NUCLEAR TECHNIQUES,46(5),93-101.
MLA Jiang, Qilei,et al."Optimization of generative adversarial network based image super-resolution by using image mask".HE JISHU/NUCLEAR TECHNIQUES 46.5(2023):93-101.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Qilei]的文章
[Ma, Yuanxi]的文章
百度学术
百度学术中相似的文章
[Jiang, Qilei]的文章
[Ma, Yuanxi]的文章
必应学术
必应学术中相似的文章
[Jiang, Qilei]的文章
[Ma, Yuanxi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。