消息
×
loading..
A diagonal-structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment
2024-04
发表期刊IEEE SENSORS JORNAL (IF:4.3[JCR-2023],4.2[5-Year])
ISSN1530-437X
EISSN1558-1748
卷号24期号:10页码:16734-16743
发表状态已发表
DOI10.1109/JSEN.2024.3387103
摘要

Early diagnosis of mild cognitive impairment (MCI) may effectively prevent its development to Alzheimer’s disease. Function connectivity (FC) of the brain networks is a widely used biomarker for MCI detection. However, FC estimated by pre-defined metrics may unable to fully characterize the brain signals. The present study aims to develop a deep learning framework directly applied to the brain signals for improved MCI diagnosis. A resting-state functional magnetic resonance imaging (rs-fMRI) dataset containing normal controls (NC), early MCI (EMCI), and late MCI (LMCI) was used to develop and evaluate our model. Blood-oxygenation-level-dependent (BOLD) signals were measured by the fMRI. A 1-D pointwise convolution was employed to freely capture the spatial features, and a diagonal structured state space sequence (S4D) model was designed to extract the temporal features, particularly the long-term dependence of the BOLD signals. The proposed model was evaluated on three classification tasks, i.e., NC vs. EMCI, EMCI vs. LMCI, and NC vs. EMCI vs. LMCI, with repeated 10-fold cross validation. Accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve were calculated as performance metrics. For the two binary classification tasks, our model achieves the best performance in all metrics among seven state-of-the-art (SOTA) methods. For the three-category classification, despite slightly lower sensitivity, our model produces an overall superior performance than other methods. Our results indicate that long-term dependence of the BOLD signals may contribute significantly to MCI detection, providing useful information for automated diagnosis of MCI. IEEE

关键词Functional magnetic resonance imaging mild cognitive impairment spatial filter structured state space sequence model
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
WOS研究方向Engineering ; Instruments & Instrumentation ; Physics
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Physics, Applied
WOS记录号WOS:001267370300131
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20241715954656
EI主题词Convolution
EI分类号461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 703.2 Electric Filters ; 711.2 Electromagnetic Waves in Relation to Various Structures ; 716.1 Information Theory and Signal Processing ; 746 Imaging Techniques
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/359676
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_郑杰组
信息科学与技术学院_PI研究组_徐林组
通讯作者Xu L(徐林)
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Cao, Tangwei,Liu, Xin,Du, Zuyu,et al. A diagonal-structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment[J]. IEEE SENSORS JORNAL,2024,24(10):16734-16743.
APA Cao, Tangwei,Liu, Xin,Du, Zuyu,Zhou, Jiankui,Zheng, Jie,&Xu L.(2024).A diagonal-structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment.IEEE SENSORS JORNAL,24(10),16734-16743.
MLA Cao, Tangwei,et al."A diagonal-structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment".IEEE SENSORS JORNAL 24.10(2024):16734-16743.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cao, Tangwei]的文章
[Liu, Xin]的文章
[Du, Zuyu]的文章
百度学术
百度学术中相似的文章
[Cao, Tangwei]的文章
[Liu, Xin]的文章
[Du, Zuyu]的文章
必应学术
必应学术中相似的文章
[Cao, Tangwei]的文章
[Liu, Xin]的文章
[Du, Zuyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。