| |||||||
ShanghaiTech University Knowledge Management System
A diagonal-structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment | |
2024-04 | |
发表期刊 | IEEE SENSORS JORNAL (IF:4.3[JCR-2023],4.2[5-Year]) |
ISSN | 1530-437X |
EISSN | 1558-1748 |
卷号 | 24期号:10页码:16734-16743 |
发表状态 | 已发表 |
DOI | 10.1109/JSEN.2024.3387103 |
摘要 | Early diagnosis of mild cognitive impairment (MCI) may effectively prevent its development to Alzheimer’s disease. Function connectivity (FC) of the brain networks is a widely used biomarker for MCI detection. However, FC estimated by pre-defined metrics may unable to fully characterize the brain signals. The present study aims to develop a deep learning framework directly applied to the brain signals for improved MCI diagnosis. A resting-state functional magnetic resonance imaging (rs-fMRI) dataset containing normal controls (NC), early MCI (EMCI), and late MCI (LMCI) was used to develop and evaluate our model. Blood-oxygenation-level-dependent (BOLD) signals were measured by the fMRI. A 1-D pointwise convolution was employed to freely capture the spatial features, and a diagonal structured state space sequence (S4D) model was designed to extract the temporal features, particularly the long-term dependence of the BOLD signals. The proposed model was evaluated on three classification tasks, i.e., NC vs. EMCI, EMCI vs. LMCI, and NC vs. EMCI vs. LMCI, with repeated 10-fold cross validation. Accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve were calculated as performance metrics. For the two binary classification tasks, our model achieves the best performance in all metrics among seven state-of-the-art (SOTA) methods. For the three-category classification, despite slightly lower sensitivity, our model produces an overall superior performance than other methods. Our results indicate that long-term dependence of the BOLD signals may contribute significantly to MCI detection, providing useful information for automated diagnosis of MCI. IEEE |
关键词 | Functional magnetic resonance imaging mild cognitive impairment spatial filter structured state space sequence model |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Engineering ; Instruments & Instrumentation ; Physics |
WOS类目 | Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Physics, Applied |
WOS记录号 | WOS:001267370300131 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20241715954656 |
EI主题词 | Convolution |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 703.2 Electric Filters ; 711.2 Electromagnetic Waves in Relation to Various Structures ; 716.1 Information Theory and Signal Processing ; 746 Imaging Techniques |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/359676 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_郑杰组 信息科学与技术学院_PI研究组_徐林组 |
通讯作者 | Xu L(徐林) |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Cao, Tangwei,Liu, Xin,Du, Zuyu,et al. A diagonal-structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment[J]. IEEE SENSORS JORNAL,2024,24(10):16734-16743. |
APA | Cao, Tangwei,Liu, Xin,Du, Zuyu,Zhou, Jiankui,Zheng, Jie,&Xu L.(2024).A diagonal-structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment.IEEE SENSORS JORNAL,24(10),16734-16743. |
MLA | Cao, Tangwei,et al."A diagonal-structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment".IEEE SENSORS JORNAL 24.10(2024):16734-16743. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Cao, Tangwei]的文章 |
[Liu, Xin]的文章 |
[Du, Zuyu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Cao, Tangwei]的文章 |
[Liu, Xin]的文章 |
[Du, Zuyu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Cao, Tangwei]的文章 |
[Liu, Xin]的文章 |
[Du, Zuyu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。