ShanghaiTech University Knowledge Management System
Unified Deep Learning For Simultaneous Cardiac Cine MRI Reconstruction, Motion Estimation And Segmentation | |
2024 | |
会议录名称 | 21ST IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING |
ISSN | 1945-7928 |
发表状态 | 已发表 |
DOI | 10.1109/ISBI56570.2024.10635390 |
摘要 | Deep learning methods have achieved great success in cardiac cine MRI reconstruction, motion estimation, and segmentation. However, most studies considered the three tasks separately. While benefits have been shown for dual-task learning, such as motion-compensated cine MRI reconstruction and motion-guided cine segmentation, a framework considering all three tasks to more effectively exploit inter-task dependency remains uninvestigated. To fill this gap, we propose a unified approach that adopts groupwise image registration to estimate motion between cine frames, which is leveraged to assist reconstruction and segmentation. In particular, motion-augmented images enhance the reconstruction task, and motion-generated annotations offer additional supervision for the segmentation task. The improved reconstruction and segmentation will in turn help to yield more accurate motion estimation. We embed the three tasks in an unrolled framework, enabling iterative coarse-to-fine refinement of predictions across all tasks. Experimental results on a cine MRI dataset show the superior performance of the proposed method compared with the single-task and dual-task baseline methods. |
会议录编者/会议主办者 | AI2D Center ; et al. ; Therapanacea ; Thermo Fisher Scientific ; United Imaging Intelligence ; Verasonics |
关键词 | Contrastive Learning Deep learning Deep reinforcement learning Image annotation Image enhancement Image reconstruction Image registration Image segmentation Motion capture Motion compensation Motion estimation Cardiac cine MRI Cine-MRI Deep learning Dual-tasks Learning methods Motion segmentation Motion-compensated reconstruction MRI reconstruction Segmentation Task learning |
会议名称 | 21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 |
会议地点 | Athens, Greece |
会议日期 | 27-30 May 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20243717024349 |
EI主题词 | Magnetic resonance imaging |
EISSN | 1945-8452 |
EI分类号 | 1101.2 ; 1101.2.1 ; 1106.3.1 ; 709 Electrical Engineering, General ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/357336 |
专题 | 生物医学工程学院_PI研究组_胡鹏组 信息科学与技术学院_硕士生 生物医学工程学院 生物医学工程学院_PI研究组_齐海坤组 |
通讯作者 | Qian Pengfang |
作者单位 | School of Biomedical Engineering, ShanghaiTech University, Shanghai, China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Qian Pengfang,Zhou Zijian,Hu Peng,et al. Unified Deep Learning For Simultaneous Cardiac Cine MRI Reconstruction, Motion Estimation And Segmentation[C]//AI2D Center, et al., Therapanacea, Thermo Fisher Scientific, United Imaging Intelligence, Verasonics:IEEE Computer Society,2024. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。