Unified Deep Learning For Simultaneous Cardiac Cine MRI Reconstruction, Motion Estimation And Segmentation
2024
会议录名称21ST IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING
ISSN1945-7928
发表状态已发表
DOI10.1109/ISBI56570.2024.10635390
摘要Deep learning methods have achieved great success in cardiac cine MRI reconstruction, motion estimation, and segmentation. However, most studies considered the three tasks separately. While benefits have been shown for dual-task learning, such as motion-compensated cine MRI reconstruction and motion-guided cine segmentation, a framework considering all three tasks to more effectively exploit inter-task dependency remains uninvestigated. To fill this gap, we propose a unified approach that adopts groupwise image registration to estimate motion between cine frames, which is leveraged to assist reconstruction and segmentation. In particular, motion-augmented images enhance the reconstruction task, and motion-generated annotations offer additional supervision for the segmentation task. The improved reconstruction and segmentation will in turn help to yield more accurate motion estimation. We embed the three tasks in an unrolled framework, enabling iterative coarse-to-fine refinement of predictions across all tasks. Experimental results on a cine MRI dataset show the superior performance of the proposed method compared with the single-task and dual-task baseline methods.
会议录编者/会议主办者AI2D Center ; et al. ; Therapanacea ; Thermo Fisher Scientific ; United Imaging Intelligence ; Verasonics
关键词Contrastive Learning Deep learning Deep reinforcement learning Image annotation Image enhancement Image reconstruction Image registration Image segmentation Motion capture Motion compensation Motion estimation Cardiac cine MRI Cine-MRI Deep learning Dual-tasks Learning methods Motion segmentation Motion-compensated reconstruction MRI reconstruction Segmentation Task learning
会议名称21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
会议地点Athens, Greece
会议日期27-30 May 2024
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20243717024349
EI主题词Magnetic resonance imaging
EISSN1945-8452
EI分类号1101.2 ; 1101.2.1 ; 1106.3.1 ; 709 Electrical Engineering, General ; 746 Imaging Techniques
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/357336
专题生物医学工程学院_PI研究组_胡鹏组
信息科学与技术学院_硕士生
生物医学工程学院
生物医学工程学院_PI研究组_齐海坤组
通讯作者Qian Pengfang
作者单位
School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Qian Pengfang,Zhou Zijian,Hu Peng,et al. Unified Deep Learning For Simultaneous Cardiac Cine MRI Reconstruction, Motion Estimation And Segmentation[C]//AI2D Center, et al., Therapanacea, Thermo Fisher Scientific, United Imaging Intelligence, Verasonics:IEEE Computer Society,2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Qian Pengfang]的文章
[Zhou Zijian]的文章
[Hu Peng]的文章
百度学术
百度学术中相似的文章
[Qian Pengfang]的文章
[Zhou Zijian]的文章
[Hu Peng]的文章
必应学术
必应学术中相似的文章
[Qian Pengfang]的文章
[Zhou Zijian]的文章
[Hu Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。