消息
×
loading..
Online Optimization for Over-the-Air Federated Learning with Energy Harvesting
2023
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1558-2248
EISSN1558-2248
卷号PP期号:99页码:7291-7306
发表状态已发表
DOI10.1109/TWC.2023.3339298
摘要Federated learning (FL) is recognized as a promising privacy-preserving distributed machine learning paradigm, given its potential to enable collaborative model training among distributed devices without sharing their raw data. However, supporting FL over wireless networks confronts the critical challenges of periodically executing power-hungry training tasks on energy-constrained devices and transmitting high-dimensional model updates over spectrum-limited channels. In this paper, we reap the benefits of both energy harvesting (EH) and over-the-air computation (AirComp) to alleviate the battery limitation by harvesting ambient energy to support both the training and transmission of local models, and to achieve low-latency model aggregation by concurrently transmitting local gradients via AirComp. We characterize the convergence of the proposed FL by deriving an upper bound of the expected optimality gap, revealing that the convergence depends on the accumulated errors due to partial device participation and model distortion, both of which further depend on dynamic energy levels. To accelerate the convergence, we formulate a joint AirComp transceiver design and device scheduling problem, which is then tackled by developing an efficient Lyapunov-based online optimization algorithm. Simulations demonstrate that, by appropriately scheduling devices and allocating energy across multiple communication rounds, our proposed algorithm achieves a much better learning performance than benchmarks.
关键词Federated learning Lyapunov optimization energy harvesting over-the-air computation
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China["62001294","U20A20159","61971286","U21B2029","U21A20456","62271318"] ; Natural Science Foundation of Shanghai["23ZR1442800","21ZR1442700"] ; Zhejiang Provincial Natural Science Foundation of China[LR23F010006] ; Shanghai Rising-Star Program[22QA1406100]
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001267002700018
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20235215271111
EI主题词Energy harvesting
EI分类号525.5 Energy Conversion Issues ; 716 Telecommunication ; Radar, Radio and Television ; 716.3 Radio Systems and Equipment ; 718 Telephone Systems and Related Technologies ; Line Communications ; 723.2 Data Processing and Image Processing
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354966
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
3.Centre for Wireless Communication, University of Oulu, Finland
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Qiaochu An,Yong Zhou,Zhibin Wang,et al. Online Optimization for Over-the-Air Federated Learning with Energy Harvesting[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2023,PP(99):7291-7306.
APA Qiaochu An,Yong Zhou,Zhibin Wang,Hangguan Shan,Yuanming Shi,&Mehdi Bennis.(2023).Online Optimization for Over-the-Air Federated Learning with Energy Harvesting.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99),7291-7306.
MLA Qiaochu An,et al."Online Optimization for Over-the-Air Federated Learning with Energy Harvesting".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2023):7291-7306.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Qiaochu An]的文章
[Yong Zhou]的文章
[Zhibin Wang]的文章
百度学术
百度学术中相似的文章
[Qiaochu An]的文章
[Yong Zhou]的文章
[Zhibin Wang]的文章
必应学术
必应学术中相似的文章
[Qiaochu An]的文章
[Yong Zhou]的文章
[Zhibin Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。