| |||||||
ShanghaiTech University Knowledge Management System
An Advanced Real-Time Semantic Segmentation Algorithm for Water Level Detection | |
2023-12 | |
会议录名称 | 2023 3RD INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION ENGINEERING AND COMPUTER COMMUNICATION (EIECC)
![]() |
页码 | 682-686 |
发表状态 | 已发表 |
DOI | 10.1109/EIECC60864.2023.10456656 |
摘要 | For achieving automated water level detection based on image recognition, emphasizing precision and real-time capability, we introduce a water level detection algorithm founded on real-time semantic segmentation. Firstly, we introduce a shared feature extraction layer to effectively reduce channel and parameter redundancy in the BiSeNetV2 network. Subsequently, the feature extraction backbone is redesigned using partial convolution and FasterNet block, to achieve a balance between precision and inference speed. Additionally, we introduce an auxiliary edge loss function to improve the precision of water gauge segmentation edges. We achieved an mIoU of 97.3% at 132.9 FPS on the water gauge dataset, with a water level reading error of less than 1 cm under practical measurement conditions. Compared to other real-time semantic segmentation algorithms, our approach achieves an excellent balance between precision and real-time performance. Our method has been implemented at hydrological stations in two other regions and continues to maintain high accuracy in practical applications, demonstrating its robustness and generalization. © 2023 IEEE. |
会议录编者/会议主办者 | IEEE |
关键词 | component water level detection real-time semantic segmentation partial convolution edge supervision |
会议名称 | 3rd International Conference on Electronic Information Engineering and Computer Communication, EIECC 2023 |
会议地点 | Wuhan, China |
会议日期 | 22-24 Dec. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20241415845467 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354947 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 |
作者单位 | 1.Shanghai Institute of Microsystem and Information Technology, Shanghai, China 2.ShanghaiTech University, Shanghai, China 3.University of Chinese Academy of Sciences, Shanghai, China |
第一作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Nan Wang,Wei He,Huaze Ding,et al. An Advanced Real-Time Semantic Segmentation Algorithm for Water Level Detection[C]//IEEE:Institute of Electrical and Electronics Engineers Inc.,2023:682-686. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Nan Wang]的文章 |
[Wei He]的文章 |
[Huaze Ding]的文章 |
百度学术 |
百度学术中相似的文章 |
[Nan Wang]的文章 |
[Wei He]的文章 |
[Huaze Ding]的文章 |
必应学术 |
必应学术中相似的文章 |
[Nan Wang]的文章 |
[Wei He]的文章 |
[Huaze Ding]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。