Zigzag Attention: A Structural Aware Module For Lane Detection
2024
会议录名称ICASSP 2024 - 2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
ISSN1520-6149
页码4175-4179
发表状态已发表
DOI10.1109/ICASSP48485.2024.10446500
摘要Lane detection presents a formidable challenge in the realm of autonomous driving, given the real-time processing demands, diverse acquisition conditions, and the unique elongated and angular characteristics of lane lines. While a multitude of network design strategies have been proposed to tackle this challenge, few effectively address the distinct morphology of lane lines. Approaches that leverage global relationships across all positions, e.g. attention mechanisms, are often hard to meet real-time processing requirements due to their computational complexity. To address these challenges and unique attributes of lane lines, including issues like occlusion and dashed lines, we present a specialized and plug-and-play attention module. It employs zigzag transformations to cohesively assemble spatially disparate, lane-relevant regions, thereby transforming the challenge into one of localized feature learning, which can be easily enhanced via lightweight convolutions and fully connected layers. Additionally, we harness the symmetry inherent in lane lines to bolster the learning process and enhance accuracy. Comprehensive experimentation validates the efficacy of our proposed module across a range of algorithms, demonstrating superior performance metrics, including parameters, computational complexity, and runtime, when compared to other attention approaches.
关键词Lane detection structural awareness zigzag transformation attention module
会议地点Seoul, Korea, Republic of
会议日期14-19 April 2024
URL查看原文
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354939
专题信息科学与技术学院
信息科学与技术学院_硕士生
作者单位
1.School of EIC, Huazhong University of Science and Technology, Wuhan, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
3.Department of Environmental Sciences, Emory University, Atlanta, GA, USA
推荐引用方式
GB/T 7714
Jiajun Ling,Yifan Chen,Qimin Cheng,et al. Zigzag Attention: A Structural Aware Module For Lane Detection[C],2024:4175-4179.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiajun Ling]的文章
[Yifan Chen]的文章
[Qimin Cheng]的文章
百度学术
百度学术中相似的文章
[Jiajun Ling]的文章
[Yifan Chen]的文章
[Qimin Cheng]的文章
必应学术
必应学术中相似的文章
[Jiajun Ling]的文章
[Yifan Chen]的文章
[Qimin Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。