| |||||||
ShanghaiTech University Knowledge Management System
Enhancing Non-line-of-sight Imaging via Learnable Inverse Kernel and Attention Mechanisms | |
2023-10 | |
会议录名称 | 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
![]() |
ISSN | 1550-5499 |
页码 | 10529-10539 |
发表状态 | 已发表 |
DOI | 10.1109/ICCV51070.2023.00969 |
摘要 | Recovering information from non-line-of-sight (NLOS) imaging is a computationally-intensive inverse problem. Most physics-based NLOS imaging methods address the complexity of this problem by assuming three-bounce reflections and no self-occlusion. However, these assumptions may break down for objects with large depth variations, preventing physics-based algorithms from accurately reconstructing the details and high-frequency information. On the other hand, while learning-based methods can avoid these assumptions, they may struggle to reconstruct details without specific designs due to the spectral bias of neural networks. To overcome these issues, we propose a novel approach that enhances physics-based NLOS imaging methods by introducing a learnable inverse kernel in the Fourier domain and using an attention mechanism to improve the neural network to learn high-frequency information. Our method is evaluated on publicly available and new synthetic datasets, demonstrating its commendable performance compared to prior physics-based and learning-based methods, especially for objects with large depth variations. Moreover, our approach generalizes well to real data and can be applied to tasks such as classification and depth reconstruction. We will make our code and dataset publicly available: https://sci2020.github.io. © 2023 IEEE. |
关键词 | Learning systems Training Inverse problems Neural networks Imaging Reflection Kernel |
会议名称 | 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 |
会议地点 | Paris, France |
会议日期 | 1-6 Oct. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20241215793281 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354921 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yanhua Yu,Siyuan Shen,Zi Wang,et al. Enhancing Non-line-of-sight Imaging via Learnable Inverse Kernel and Attention Mechanisms[C]:Institute of Electrical and Electronics Engineers Inc.,2023:10529-10539. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yanhua Yu]的文章 |
[Siyuan Shen]的文章 |
[Zi Wang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yanhua Yu]的文章 |
[Siyuan Shen]的文章 |
[Zi Wang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yanhua Yu]的文章 |
[Siyuan Shen]的文章 |
[Zi Wang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。