消息
×
loading..
GNN-Aided Distributed GAN with Partially Observable Social Graph
2024-04
会议录名称IEEE WCNC 2024
ISSN1525-3511
发表状态已发表
DOI10.1109/WCNC57260.2024.10570928
摘要

The proliferation of edge computing has facilitated the edge-based artificial intelligence-generated content (AIGC) for ubiquitous and distributed end devices. To exemplify, we focus on the distributed implementation of one established instance, generative adversarial network (GAN), yielding the \textit{distributed GAN} task. Practically speaking, this task usually is impeded by concerns including the unknown latency (of processing and transmission), the fairness requirement induced by heterogeneous distributed data and the limited energy budget of end devices. Besides, an often neglected factor is how to exploit feedback from networked end devices among which social ties indicate the flow of shared information. In practice, such social ties are partially observable to lack of exact knowledge of users, \textit{e.g.}, resulted from scarce historical data and privacy issues. Under this setting, we propose an online algorithm via integration of 1) online learning aided by graph neural network (GNN), aiming to recover social ties with GNN-based edge prediction, for accelerated learning of uncertainty and 2) online control to adaptively guarantee the constraints. We theoretically show that it not only achieves a sub-linear regret with guaranteed energy consumption and fairness but also leads to a superior global GAN. We also conduct simulations to justify its outperformance over online baselines.

关键词Budget control Deep learning E-learning Energy utilization Graph neural networks Ubiquitous computing Distributed data Distributed implementation Edge computing Edge-based End-devices Energy budgets Graph neural networks Limited energies Social graphs Social ties
会议名称25th IEEE Wireless Communications and Networking Conference, WCNC 2024
会议地点Dubai, United Arab Emirates
会议日期21-24 April 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242916728871
EI主题词Generative adversarial networks
EI分类号461.4 Ergonomics and Human Factors Engineering ; 525.3 Energy Utilization ; 723.4 Artificial Intelligence ; 723.5 Computer Applications
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/350270
专题信息科学与技术学院
信息科学与技术学院_PI研究组_邵子瑜组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Shao, Ziyu; Yang, Yang
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Hong Kong University of Science and Technology (Guangzhou), China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chen, Ming,Wang, Shangshang,Zhang, Tianyi,et al. GNN-Aided Distributed GAN with Partially Observable Social Graph[C]:Institute of Electrical and Electronics Engineers Inc.,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Ming]的文章
[Wang, Shangshang]的文章
[Zhang, Tianyi]的文章
百度学术
百度学术中相似的文章
[Chen, Ming]的文章
[Wang, Shangshang]的文章
[Zhang, Tianyi]的文章
必应学术
必应学术中相似的文章
[Chen, Ming]的文章
[Wang, Shangshang]的文章
[Zhang, Tianyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。