| |||||||
ShanghaiTech University Knowledge Management System
GNN-Aided Distributed GAN with Partially Observable Social Graph | |
2024-04 | |
会议录名称 | IEEE WCNC 2024 |
ISSN | 1525-3511 |
发表状态 | 已发表 |
DOI | 10.1109/WCNC57260.2024.10570928 |
摘要 | The proliferation of edge computing has facilitated the edge-based artificial intelligence-generated content (AIGC) for ubiquitous and distributed end devices. To exemplify, we focus on the distributed implementation of one established instance, generative adversarial network (GAN), yielding the \textit{distributed GAN} task. Practically speaking, this task usually is impeded by concerns including the unknown latency (of processing and transmission), the fairness requirement induced by heterogeneous distributed data and the limited energy budget of end devices. Besides, an often neglected factor is how to exploit feedback from networked end devices among which social ties indicate the flow of shared information. In practice, such social ties are partially observable to lack of exact knowledge of users, \textit{e.g.}, resulted from scarce historical data and privacy issues. Under this setting, we propose an online algorithm via integration of 1) online learning aided by graph neural network (GNN), aiming to recover social ties with GNN-based edge prediction, for accelerated learning of uncertainty and 2) online control to adaptively guarantee the constraints. We theoretically show that it not only achieves a sub-linear regret with guaranteed energy consumption and fairness but also leads to a superior global GAN. We also conduct simulations to justify its outperformance over online baselines. |
关键词 | Budget control Deep learning E-learning Energy utilization Graph neural networks Ubiquitous computing Distributed data Distributed implementation Edge computing Edge-based End-devices Energy budgets Graph neural networks Limited energies Social graphs Social ties |
会议名称 | 25th IEEE Wireless Communications and Networking Conference, WCNC 2024 |
会议地点 | Dubai, United Arab Emirates |
会议日期 | 21-24 April 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242916728871 |
EI主题词 | Generative adversarial networks |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 525.3 Energy Utilization ; 723.4 Artificial Intelligence ; 723.5 Computer Applications |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/350270 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Shao, Ziyu; Yang, Yang |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Hong Kong University of Science and Technology (Guangzhou), China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen, Ming,Wang, Shangshang,Zhang, Tianyi,et al. GNN-Aided Distributed GAN with Partially Observable Social Graph[C]:Institute of Electrical and Electronics Engineers Inc.,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。