ShanghaiTech University Knowledge Management System
scICML: Information-Theoretic Co-Clustering-Based Multi-View Learning for the Integrative Analysis of Single-Cell Multi-Omics Data | |
2024-02 | |
发表期刊 | IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS |
ISSN | 2374-0043 |
EISSN | 1557-9964 |
卷号 | 21期号:1页码:200-207 |
发表状态 | 已发表 |
DOI | 10.1109/TCBB.2023.3305989 |
摘要 | Modern high-throughput sequencing technologies have enabled us to profile multiple molecular modalities from the same single cell, providing unprecedented opportunities to assay cellular heterogeneity from multiple biological layers. However, the datasets generated from these technologies tend to have high level of noise and are highly sparse, bringing challenges to data analysis. In this paper, we develop a novel information-theoretic co-clustering-based multi-view learning (scICML) method for multi-omics single-cell data integration. scICML utilizes co-clusterings to aggregate similar features for each view of data and uncover the common clustering pattern for cells. In addition, scICML automatically matches the clusters of the linked features across different data types for considering the biological dependency structure across different types of genomic features. Our experiments on four real-world datasets demonstrate that scICML improves the overall clustering performance and provides biological insights into the data analysis of peripheral blood mononuclear cells. © 2004-2012 IEEE. |
关键词 | Clustering multi-view learning single-cell multi-omics integration Bioinformatics Cytology Data integration Gene expression Information analysis Information theory Pattern matching 'omics' Clusterings Genes expression Genomics Multi-view learning Mutual informations Optimisations Pattern-matching Single cells Single-cell multi-omic integration |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20233514639182 |
EI主题词 | Genome |
EI分类号 | 461.2 Biological Materials and Tissue Engineering ; 461.8.2 Bioinformatics ; 461.9 Biology ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 903.1 Information Sources and Analysis |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349947 |
专题 | 数学科学研究所 数学科学研究所_PI研究组(P)_曾鹏程组 |
通讯作者 | Zeng, Pengcheng |
作者单位 | 1.Shanghaitech University, Institute of Mathematical Sciences, Shanghai; 201210, China; 2.Chinese University of Hong Kong, Department of Statistics, Hong Kong, Hong Kong |
第一作者单位 | 数学科学研究所 |
通讯作者单位 | 数学科学研究所 |
第一作者的第一单位 | 数学科学研究所 |
推荐引用方式 GB/T 7714 | Zeng, Pengcheng,Lin, Zhixiang. scICML: Information-Theoretic Co-Clustering-Based Multi-View Learning for the Integrative Analysis of Single-Cell Multi-Omics Data[J]. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,2024,21(1):200-207. |
APA | Zeng, Pengcheng,&Lin, Zhixiang.(2024).scICML: Information-Theoretic Co-Clustering-Based Multi-View Learning for the Integrative Analysis of Single-Cell Multi-Omics Data.IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,21(1),200-207. |
MLA | Zeng, Pengcheng,et al."scICML: Information-Theoretic Co-Clustering-Based Multi-View Learning for the Integrative Analysis of Single-Cell Multi-Omics Data".IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 21.1(2024):200-207. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zeng, Pengcheng]的文章 |
[Lin, Zhixiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zeng, Pengcheng]的文章 |
[Lin, Zhixiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zeng, Pengcheng]的文章 |
[Lin, Zhixiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。