scICML: Information-Theoretic Co-Clustering-Based Multi-View Learning for the Integrative Analysis of Single-Cell Multi-Omics Data
2024-02
发表期刊IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
ISSN2374-0043
EISSN1557-9964
卷号21期号:1页码:200-207
发表状态已发表
DOI10.1109/TCBB.2023.3305989
摘要

Modern high-throughput sequencing technologies have enabled us to profile multiple molecular modalities from the same single cell, providing unprecedented opportunities to assay cellular heterogeneity from multiple biological layers. However, the datasets generated from these technologies tend to have high level of noise and are highly sparse, bringing challenges to data analysis. In this paper, we develop a novel information-theoretic co-clustering-based multi-view learning (scICML) method for multi-omics single-cell data integration. scICML utilizes co-clusterings to aggregate similar features for each view of data and uncover the common clustering pattern for cells. In addition, scICML automatically matches the clusters of the linked features across different data types for considering the biological dependency structure across different types of genomic features. Our experiments on four real-world datasets demonstrate that scICML improves the overall clustering performance and provides biological insights into the data analysis of peripheral blood mononuclear cells. © 2004-2012 IEEE.

关键词Clustering multi-view learning single-cell multi-omics integration Bioinformatics Cytology Data integration Gene expression Information analysis Information theory Pattern matching 'omics' Clusterings Genes expression Genomics Multi-view learning Mutual informations Optimisations Pattern-matching Single cells Single-cell multi-omic integration
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20233514639182
EI主题词Genome
EI分类号461.2 Biological Materials and Tissue Engineering ; 461.8.2 Bioinformatics ; 461.9 Biology ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 903.1 Information Sources and Analysis
原始文献类型Journal article (JA)
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349947
专题数学科学研究所
数学科学研究所_PI研究组(P)_曾鹏程组
通讯作者Zeng, Pengcheng
作者单位
1.Shanghaitech University, Institute of Mathematical Sciences, Shanghai; 201210, China;
2.Chinese University of Hong Kong, Department of Statistics, Hong Kong, Hong Kong
第一作者单位数学科学研究所
通讯作者单位数学科学研究所
第一作者的第一单位数学科学研究所
推荐引用方式
GB/T 7714
Zeng, Pengcheng,Lin, Zhixiang. scICML: Information-Theoretic Co-Clustering-Based Multi-View Learning for the Integrative Analysis of Single-Cell Multi-Omics Data[J]. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,2024,21(1):200-207.
APA Zeng, Pengcheng,&Lin, Zhixiang.(2024).scICML: Information-Theoretic Co-Clustering-Based Multi-View Learning for the Integrative Analysis of Single-Cell Multi-Omics Data.IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,21(1),200-207.
MLA Zeng, Pengcheng,et al."scICML: Information-Theoretic Co-Clustering-Based Multi-View Learning for the Integrative Analysis of Single-Cell Multi-Omics Data".IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 21.1(2024):200-207.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zeng, Pengcheng]的文章
[Lin, Zhixiang]的文章
百度学术
百度学术中相似的文章
[Zeng, Pengcheng]的文章
[Lin, Zhixiang]的文章
必应学术
必应学术中相似的文章
[Zeng, Pengcheng]的文章
[Lin, Zhixiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TCBB.2023.3305989.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。