ANOVA-GP Modeling for High-Dimensional Bayesian Inverse Problems
2024-01
发表期刊MATHEMATICS (IF:2.3[JCR-2023],2.2[5-Year])
EISSN2227-7390
卷号12期号:2
发表状态已发表
DOI10.3390/math12020301
摘要Markov chain Monte Carlo (MCMC) stands out as an effective method for tackling Bayesian inverse problems. However, when dealing with computationally expensive forward models and high-dimensional parameter spaces, the challenge of repeated sampling becomes pronounced. A common strategy to address this challenge is to construct an inexpensive surrogate of the forward model, which cuts the computational cost of individual samples. While the Gaussian process (GP) is widely used as a surrogate modeling strategy, its applicability can be limited when dealing with high-dimensional input or output spaces. This paper presents a novel approach that combines the analysis of variance (ANOVA) decomposition method with Gaussian process regression to handle high-dimensional Bayesian inverse problems. Initially, the ANOVA method is employed to reduce the dimension of the parameter space, which decomposes the original high-dimensional problem into several low-dimensional sub-problems. Subsequently, principal component analysis (PCA) is utilized to reduce the dimension of the output space on each sub-problem. Finally, a Gaussian process model with a low-dimensional input and output is constructed for each sub-problem. In addition to this methodology, an adaptive ANOVA-GP-MCMC algorithm is proposed, which further enhances the adaptability and efficiency of the method in the Bayesian inversion setting. The accuracy and computational efficiency of the proposed approach are validated through numerical experiments. This innovative integration of ANOVA and Gaussian processes provides a promising solution to address challenges associated with high-dimensional parameter spaces and computationally expensive forward models in Bayesian inference.
关键词Bayesian inverse problem uncertainty quantification ANOVA decomposition principle component analysis Gaussian process regression
URL查看原文
收录类别SCI
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:001150782400001
出版者MDPI
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349929
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
通讯作者Wang, Guanjie
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shi, Xiaoyu,Zhang, Hanyu,Wang, Guanjie. ANOVA-GP Modeling for High-Dimensional Bayesian Inverse Problems[J]. MATHEMATICS,2024,12(2).
APA Shi, Xiaoyu,Zhang, Hanyu,&Wang, Guanjie.(2024).ANOVA-GP Modeling for High-Dimensional Bayesian Inverse Problems.MATHEMATICS,12(2).
MLA Shi, Xiaoyu,et al."ANOVA-GP Modeling for High-Dimensional Bayesian Inverse Problems".MATHEMATICS 12.2(2024).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shi, Xiaoyu]的文章
[Zhang, Hanyu]的文章
[Wang, Guanjie]的文章
百度学术
百度学术中相似的文章
[Shi, Xiaoyu]的文章
[Zhang, Hanyu]的文章
[Wang, Guanjie]的文章
必应学术
必应学术中相似的文章
[Shi, Xiaoyu]的文章
[Zhang, Hanyu]的文章
[Wang, Guanjie]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@math12020301.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。