Adversarially Trained Actor Critic for offline CMDPs
2024
状态已发表
摘要

We propose a Safe Adversarial Trained Actor Critic (SATAC) algorithm for offline reinforcement learning (RL) with general function approximation in the presence of limited data coverage. SATAC operates as a two-player Stackelberg game featuring a refined objective function. The actor (leader player) optimizes the policy against two adversarially trained value critics (follower players), who focus on scenarios where the actor's performance is inferior to the behavior policy. Our framework provides both theoretical guarantees and a robust deep-RL implementation. Theoretically, we demonstrate that when the actor employs a no-regret optimization oracle, SATAC achieves two guarantees: (i) For the first time in the offline RL setting, we establish that SATAC can produce a policy that outperforms the behavior policy while maintaining the same level of safety, which is critical to designing an algorithm for offline RL. (ii) We demonstrate that the algorithm guarantees policy improvement across a broad range of hyperparameters, indicating its practical robustness. Additionally, we offer a practical version of SATAC and compare it with existing state-of-the-art offline safe-RL algorithms in continuous control environments. SATAC outperforms all baselines across a range of tasks, thus validating the theoretical performance.

DOIarXiv:2401.00629
相关网址查看原文
出处Arxiv
WOS记录号PPRN:86904763
WOS类目Computer Science, Artificial Intelligence
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349899
专题信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_刘鑫组
作者单位
1.Washington State Univ, Richland, WA 99354, USA
2.ShanghaiTech Univ, Shanghai, Peoples R China
3.New Jersey Inst Technol, Newark, NJ, USA
推荐引用方式
GB/T 7714
Wei, Honghao,Peng, Xiyue,Ghosh, Arnob,et al. Adversarially Trained Actor Critic for offline CMDPs. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wei, Honghao]的文章
[Peng, Xiyue]的文章
[Ghosh, Arnob]的文章
百度学术
百度学术中相似的文章
[Wei, Honghao]的文章
[Peng, Xiyue]的文章
[Ghosh, Arnob]的文章
必应学术
必应学术中相似的文章
[Wei, Honghao]的文章
[Peng, Xiyue]的文章
[Ghosh, Arnob]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。