ShanghaiTech University Knowledge Management System
Koopman operator learning using invertible neural networks | |
2024-03-15 | |
发表期刊 | JOURNAL OF COMPUTATIONAL PHYSICS (IF:3.8[JCR-2023],4.5[5-Year]) |
ISSN | 0021-9991 |
EISSN | 1090-2716 |
卷号 | 501 |
发表状态 | 已发表 |
DOI | 10.1016/j.jcp.2024.112795 |
摘要 | In Koopman operator theory, a finite-dimensional nonlinear system is transformed into an infinite but linear system using a set of observable functions. However, manually selecting observable functions that span the invariant subspace of the Koopman operator based on prior knowledge is inefficient and challenging, particularly when little or no information is available about the underlying systems. Furthermore, current methodologies tend to disregard the importance of the invertibility of observable functions, which leads to inaccurate results. To address these challenges, we propose the so-called FlowDMD, aka Flow-based Dynamic Mode Decomposition, that utilizes the Coupling Flow Invertible Neural Network (CF-INN) framework. FlowDMD leverages the intrinsically invertible characteristics of the CF-INN to learn the invariant subspaces of the Koopman operator and accurately reconstruct state variables. Numerical experiments demonstrate the superior performance of our algorithm compared to state-of-the-art methodologies. © 2024 Elsevier Inc. |
关键词 | Linear systems Coupling flow Dynamic mode decompositions Finite dimensional Invariant subspace Invertible neural network Koopman operator Neural-networks Operator learning Operator theory Prior-knowledge |
收录类别 | EI |
语种 | 英语 |
出版者 | Academic Press Inc. |
EI入藏号 | 20240515463640 |
EI主题词 | Dynamic mode decomposition |
EI分类号 | 961 Systems Science |
原始文献类型 | Journal article (JA) |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349711 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 |
通讯作者 | Qiu, Yue |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China 2.College of Mathematics and Statistics, Chongqing University, Chongqing; 401331, China 3.Key Laboratory of Nonlinear Analysis and Its Applications (Chongqing University), Ministry of Education, Chongqing; 401331, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Meng, Yuhuang,Huang, Jianguo,Qiu, Yue. Koopman operator learning using invertible neural networks[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2024,501. |
APA | Meng, Yuhuang,Huang, Jianguo,&Qiu, Yue.(2024).Koopman operator learning using invertible neural networks.JOURNAL OF COMPUTATIONAL PHYSICS,501. |
MLA | Meng, Yuhuang,et al."Koopman operator learning using invertible neural networks".JOURNAL OF COMPUTATIONAL PHYSICS 501(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。