Koopman operator learning using invertible neural networks
2024-03-15
发表期刊JOURNAL OF COMPUTATIONAL PHYSICS (IF:3.8[JCR-2023],4.5[5-Year])
ISSN0021-9991
EISSN1090-2716
卷号501
发表状态已发表
DOI10.1016/j.jcp.2024.112795
摘要

In Koopman operator theory, a finite-dimensional nonlinear system is transformed into an infinite but linear system using a set of observable functions. However, manually selecting observable functions that span the invariant subspace of the Koopman operator based on prior knowledge is inefficient and challenging, particularly when little or no information is available about the underlying systems. Furthermore, current methodologies tend to disregard the importance of the invertibility of observable functions, which leads to inaccurate results. To address these challenges, we propose the so-called FlowDMD, aka Flow-based Dynamic Mode Decomposition, that utilizes the Coupling Flow Invertible Neural Network (CF-INN) framework. FlowDMD leverages the intrinsically invertible characteristics of the CF-INN to learn the invariant subspaces of the Koopman operator and accurately reconstruct state variables. Numerical experiments demonstrate the superior performance of our algorithm compared to state-of-the-art methodologies. © 2024 Elsevier Inc.

关键词Linear systems Coupling flow Dynamic mode decompositions Finite dimensional Invariant subspace Invertible neural network Koopman operator Neural-networks Operator learning Operator theory Prior-knowledge
收录类别EI
语种英语
出版者Academic Press Inc.
EI入藏号20240515463640
EI主题词Dynamic mode decomposition
EI分类号961 Systems Science
原始文献类型Journal article (JA)
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349711
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Qiu, Yue
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China
2.College of Mathematics and Statistics, Chongqing University, Chongqing; 401331, China
3.Key Laboratory of Nonlinear Analysis and Its Applications (Chongqing University), Ministry of Education, Chongqing; 401331, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Meng, Yuhuang,Huang, Jianguo,Qiu, Yue. Koopman operator learning using invertible neural networks[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2024,501.
APA Meng, Yuhuang,Huang, Jianguo,&Qiu, Yue.(2024).Koopman operator learning using invertible neural networks.JOURNAL OF COMPUTATIONAL PHYSICS,501.
MLA Meng, Yuhuang,et al."Koopman operator learning using invertible neural networks".JOURNAL OF COMPUTATIONAL PHYSICS 501(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Meng, Yuhuang]的文章
[Huang, Jianguo]的文章
[Qiu, Yue]的文章
百度学术
百度学术中相似的文章
[Meng, Yuhuang]的文章
[Huang, Jianguo]的文章
[Qiu, Yue]的文章
必应学术
必应学术中相似的文章
[Meng, Yuhuang]的文章
[Huang, Jianguo]的文章
[Qiu, Yue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。