Deep Learning-Based Quantitative Blastocyst Assessment
2023
会议录名称PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, EMBS
ISSN1557-170X
发表状态已发表
DOI10.1109/EMBC40787.2023.10340963
摘要

Selecting the single best blastocyst based on morphological appearance for implantation is a crucial part of in vitro fertilization (IVF). Various deep learning and computer vision-based methods have recently been applied for assessing blastocyst quality. However, to the best of our knowledge, most previous works utilize classification networks to give a qualitative evaluation. It would be challenging to rank blastocyst quality with the same qualitative result. Thus, this paper proposes a regression network combined with a soft attention mechanism for quantitatively evaluating blastocyst quality. The network outputs a continuous score to represent blastocyst quality precisely rather than some categories. As to the soft attention mechanism, the attention module in the network outputs an activation map (attention map) localizing the regions of interest (ROI, i.e., inner cell mass (ICM)) of microscopic blastocyst images. The generated activation map guides the entire network to predict ICM quality more accurately. The experimental results demonstrate that the proposed method is superior to traditional classification-based networks. Moreover, the visualized activation map makes the proposed network decision more reliable. © 2023 IEEE.

关键词Deep learning Activation maps Attention mechanisms Classification networks In-vitro Inner cell mass Qualitative evaluations The region of interest (ROI) Vision-based methods Vitro fertilization
会议名称45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Sydney, NSW, Australia
会议日期July 24, 2023 - July 27, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical
WOS记录号WOS:001133788304077
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240215362463
EI主题词Chemical activation
EISSN1558-4615
EI分类号461.4 Ergonomics and Human Factors Engineering ; 802.2 Chemical Reactions ; 804 Chemical Products Generally
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349512
专题信息科学与技术学院_硕士生
创意与艺术学院_PI研究组(P)_谢广平组
创意与艺术学院_PI研究组(P)_武颖娜组
通讯作者Wang, Youcheng; Ni, Na; Tong, Guoqing
作者单位
1.ShanghaiTech Univ, Ctr Adapt Syst Engn, Shanghai, Peoples R China
2.Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Reprod Med, Xian, Peoples R China
3.Shanghai Univ Tradit Chinese Med, Shuguang Hosp, Reprod Med Ctr, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zheng, Zhe,Wang, Youcheng,Ni, Na,et al. Deep Learning-Based Quantitative Blastocyst Assessment[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zheng, Zhe]的文章
[Wang, Youcheng]的文章
[Ni, Na]的文章
百度学术
百度学术中相似的文章
[Zheng, Zhe]的文章
[Wang, Youcheng]的文章
[Ni, Na]的文章
必应学术
必应学术中相似的文章
[Zheng, Zhe]的文章
[Wang, Youcheng]的文章
[Ni, Na]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。