ShanghaiTech University Knowledge Management System
Deep Learning-Based Quantitative Blastocyst Assessment | |
2023 | |
会议录名称 | PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, EMBS |
ISSN | 1557-170X |
发表状态 | 已发表 |
DOI | 10.1109/EMBC40787.2023.10340963 |
摘要 | Selecting the single best blastocyst based on morphological appearance for implantation is a crucial part of in vitro fertilization (IVF). Various deep learning and computer vision-based methods have recently been applied for assessing blastocyst quality. However, to the best of our knowledge, most previous works utilize classification networks to give a qualitative evaluation. It would be challenging to rank blastocyst quality with the same qualitative result. Thus, this paper proposes a regression network combined with a soft attention mechanism for quantitatively evaluating blastocyst quality. The network outputs a continuous score to represent blastocyst quality precisely rather than some categories. As to the soft attention mechanism, the attention module in the network outputs an activation map (attention map) localizing the regions of interest (ROI, i.e., inner cell mass (ICM)) of microscopic blastocyst images. The generated activation map guides the entire network to predict ICM quality more accurately. The experimental results demonstrate that the proposed method is superior to traditional classification-based networks. Moreover, the visualized activation map makes the proposed network decision more reliable. © 2023 IEEE. |
关键词 | Deep learning Activation maps Attention mechanisms Classification networks In-vitro Inner cell mass Qualitative evaluations The region of interest (ROI) Vision-based methods Vitro fertilization |
会议名称 | 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Sydney, NSW, Australia |
会议日期 | July 24, 2023 - July 27, 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical |
WOS记录号 | WOS:001133788304077 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240215362463 |
EI主题词 | Chemical activation |
EISSN | 1558-4615 |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 802.2 Chemical Reactions ; 804 Chemical Products Generally |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349512 |
专题 | 信息科学与技术学院_硕士生 创意与艺术学院_PI研究组(P)_谢广平组 创意与艺术学院_PI研究组(P)_武颖娜组 |
通讯作者 | Wang, Youcheng; Ni, Na; Tong, Guoqing |
作者单位 | 1.ShanghaiTech Univ, Ctr Adapt Syst Engn, Shanghai, Peoples R China 2.Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Reprod Med, Xian, Peoples R China 3.Shanghai Univ Tradit Chinese Med, Shuguang Hosp, Reprod Med Ctr, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zheng, Zhe,Wang, Youcheng,Ni, Na,et al. Deep Learning-Based Quantitative Blastocyst Assessment[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。