Channel Estimation Based on Contrastive Feature Learning with Few Labeled Samples
2023-09-25
会议录名称2023 IEEE 24TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC)
ISSN1948-3244
页码91-95
发表状态已发表
DOI10.1109/SPAWC53906.2023.10304517
摘要Deep learning shows great potential in massive MIMO channel estimation (CE). The traditional channel estimator based on deep neural network (DNN) requires a large amount of labeled data when completing supervised learning. Considering that real channel state information (CSI) is difficult to obtain, such methods suffer from high training cost and limited ability to adapt to dynamic environment. In this paper, we propose an efficient and effective CE algorithm based on contrastive feature learning, which can learn the ground truth channel accurately with a limited number of labeled data. The location information is utilized to preprocess the received measurement to obtain positive and negative samples, after which, contrastive learning (CL) is exploited to effectively extract CSI features. The CSI features are fed into the downstream network to complete the CE task. To improve the effectiveness of feature extraction, a joint learning scheme is further proposed. Simulation results show that the contrastive feature learning can greatly reduce the required number of labeled data and enhance the overall CE performance. © 2023 IEEE.
会议录编者/会议主办者IEEE Signal Processing Society ; The Institute of Electrical and Electronics Engineers (IEEE)
关键词Contrastive feature learning channel estimation few labeled samples feature extraction
会议名称24th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2023
会议地点Shanghai, China
会议日期25-28 Sept. 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20234915163161
EI主题词Feature extraction
EI分类号461.4 Ergonomics and Human Factors Engineering ; 802.3 Chemical Operations
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348716
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_廉黎祥组
通讯作者Lian, Lixiang
作者单位
ShanghaiTech University, School of Information Science and Technology, Shanghai; 201210, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xu, Yihan,Lian, Lixiang. Channel Estimation Based on Contrastive Feature Learning with Few Labeled Samples[C]//IEEE Signal Processing Society, The Institute of Electrical and Electronics Engineers (IEEE):Institute of Electrical and Electronics Engineers Inc.,2023:91-95.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Yihan]的文章
[Lian, Lixiang]的文章
百度学术
百度学术中相似的文章
[Xu, Yihan]的文章
[Lian, Lixiang]的文章
必应学术
必应学术中相似的文章
[Xu, Yihan]的文章
[Lian, Lixiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。