ShanghaiTech University Knowledge Management System
Channel Estimation Based on Contrastive Feature Learning with Few Labeled Samples | |
2023-09-25 | |
会议录名称 | 2023 IEEE 24TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC)
![]() |
ISSN | 1948-3244 |
页码 | 91-95 |
发表状态 | 已发表 |
DOI | 10.1109/SPAWC53906.2023.10304517 |
摘要 | Deep learning shows great potential in massive MIMO channel estimation (CE). The traditional channel estimator based on deep neural network (DNN) requires a large amount of labeled data when completing supervised learning. Considering that real channel state information (CSI) is difficult to obtain, such methods suffer from high training cost and limited ability to adapt to dynamic environment. In this paper, we propose an efficient and effective CE algorithm based on contrastive feature learning, which can learn the ground truth channel accurately with a limited number of labeled data. The location information is utilized to preprocess the received measurement to obtain positive and negative samples, after which, contrastive learning (CL) is exploited to effectively extract CSI features. The CSI features are fed into the downstream network to complete the CE task. To improve the effectiveness of feature extraction, a joint learning scheme is further proposed. Simulation results show that the contrastive feature learning can greatly reduce the required number of labeled data and enhance the overall CE performance. © 2023 IEEE. |
会议录编者/会议主办者 | IEEE Signal Processing Society ; The Institute of Electrical and Electronics Engineers (IEEE) |
关键词 | Contrastive feature learning channel estimation few labeled samples feature extraction |
会议名称 | 24th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2023 |
会议地点 | Shanghai, China |
会议日期 | 25-28 Sept. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234915163161 |
EI主题词 | Feature extraction |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 802.3 Chemical Operations |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348716 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_廉黎祥组 |
通讯作者 | Lian, Lixiang |
作者单位 | ShanghaiTech University, School of Information Science and Technology, Shanghai; 201210, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xu, Yihan,Lian, Lixiang. Channel Estimation Based on Contrastive Feature Learning with Few Labeled Samples[C]//IEEE Signal Processing Society, The Institute of Electrical and Electronics Engineers (IEEE):Institute of Electrical and Electronics Engineers Inc.,2023:91-95. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xu, Yihan]的文章 |
[Lian, Lixiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xu, Yihan]的文章 |
[Lian, Lixiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xu, Yihan]的文章 |
[Lian, Lixiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。