Certifiable Out-of-Distribution Generalization
2023-06-27
会议录名称PROCEEDINGS OF THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2023
ISSN2159-5399
卷号37
页码10927-10935
发表状态已发表
摘要Machine learning methods suffer from test-time performance degeneration when faced with out-of-distribution (OoD) data whose distribution is not necessarily the same as training data distribution. Although a plethora of algorithms have been proposed to mitigate this issue, it has been demonstrated that achieving better performance than ERM simultaneously on different types of distributional shift datasets is challenging for existing approaches. Besides, it is unknown how and to what extent these methods work on any OoD datum without theoretical guarantees. In this paper, we propose a certifiable out-of-distribution generalization method that provides provable OoD generalization performance guarantees via a functional optimization framework leveraging random distributions and max-margin learning for each input datum. With this approach, the proposed algorithmic scheme can provide certified accuracy for each input datum’s prediction on the semantic space and achieves better performance simultaneously on OoD datasets dominated by correlation shifts or diversity shifts. Our code is available at https://github.com/ZlatanWilliams/StochasticDisturbanceLearning. Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
会议录编者/会议主办者Association for the Advancement of Artificial Intelligence
关键词Artificial intelligence Learning systems Data distribution Generalisation Generalization performance Input datas Machine learning methods Performance Performance guarantees Test time Theoretical guarantees Training data
会议名称37th AAAI Conference on Artificial Intelligence, AAAI 2023
出版地2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
会议地点Washington, DC, United states
会议日期February 7, 2023 - February 14, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[62106139]
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Mathematics, Applied
WOS记录号WOS:001243747800070
出版者AAAI Press
EI入藏号20233414600908
EI主题词Semantics
EISSN2374-3468
EI分类号723.4 Artificial Intelligence
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348714
专题信息科学与技术学院_博士生
通讯作者Ye, Nanyang
作者单位
1.Shanghai Jiao Tong University, Shanghai, China
2.University of Cambridge, Cambridge, United Kingdom
3.University of Warwick, Warwick, United Kingdom
4.ShanghaiTech University, Shanghai, China
5.Huawei Noah’s Ark Lab., Hong Kong
6.Tsinghua University, Beijing, China
推荐引用方式
GB/T 7714
Ye, Nanyang,Zhu, Lin,Wang, Jia,et al. Certifiable Out-of-Distribution Generalization[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:AAAI Press,2023:10927-10935.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ye, Nanyang]的文章
[Zhu, Lin]的文章
[Wang, Jia]的文章
百度学术
百度学术中相似的文章
[Ye, Nanyang]的文章
[Zhu, Lin]的文章
[Wang, Jia]的文章
必应学术
必应学术中相似的文章
[Ye, Nanyang]的文章
[Zhu, Lin]的文章
[Wang, Jia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。