ShanghaiTech University Knowledge Management System
Certifiable Out-of-Distribution Generalization | |
2023-06-27 | |
会议录名称 | PROCEEDINGS OF THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2023 |
ISSN | 2159-5399 |
卷号 | 37 |
页码 | 10927-10935 |
发表状态 | 已发表 |
摘要 | Machine learning methods suffer from test-time performance degeneration when faced with out-of-distribution (OoD) data whose distribution is not necessarily the same as training data distribution. Although a plethora of algorithms have been proposed to mitigate this issue, it has been demonstrated that achieving better performance than ERM simultaneously on different types of distributional shift datasets is challenging for existing approaches. Besides, it is unknown how and to what extent these methods work on any OoD datum without theoretical guarantees. In this paper, we propose a certifiable out-of-distribution generalization method that provides provable OoD generalization performance guarantees via a functional optimization framework leveraging random distributions and max-margin learning for each input datum. With this approach, the proposed algorithmic scheme can provide certified accuracy for each input datum’s prediction on the semantic space and achieves better performance simultaneously on OoD datasets dominated by correlation shifts or diversity shifts. Our code is available at https://github.com/ZlatanWilliams/StochasticDisturbanceLearning. Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. |
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence |
关键词 | Artificial intelligence Learning systems Data distribution Generalisation Generalization performance Input datas Machine learning methods Performance Performance guarantees Test time Theoretical guarantees Training data |
会议名称 | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA |
会议地点 | Washington, DC, United states |
会议日期 | February 7, 2023 - February 14, 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62106139] |
WOS研究方向 | Computer Science ; Mathematics |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Mathematics, Applied |
WOS记录号 | WOS:001243747800070 |
出版者 | AAAI Press |
EI入藏号 | 20233414600908 |
EI主题词 | Semantics |
EISSN | 2374-3468 |
EI分类号 | 723.4 Artificial Intelligence |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348714 |
专题 | 信息科学与技术学院_博士生 |
通讯作者 | Ye, Nanyang |
作者单位 | 1.Shanghai Jiao Tong University, Shanghai, China 2.University of Cambridge, Cambridge, United Kingdom 3.University of Warwick, Warwick, United Kingdom 4.ShanghaiTech University, Shanghai, China 5.Huawei Noah’s Ark Lab., Hong Kong 6.Tsinghua University, Beijing, China |
推荐引用方式 GB/T 7714 | Ye, Nanyang,Zhu, Lin,Wang, Jia,et al. Certifiable Out-of-Distribution Generalization[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:AAAI Press,2023:10927-10935. |
条目包含的文件 | ||||||
条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ye, Nanyang]的文章 |
[Zhu, Lin]的文章 |
[Wang, Jia]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ye, Nanyang]的文章 |
[Zhu, Lin]的文章 |
[Wang, Jia]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ye, Nanyang]的文章 |
[Zhu, Lin]的文章 |
[Wang, Jia]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。