Enhanced Object Detection of Abnormal Light Based on Multi-scale Retinex with Chromacity Preservation
2024
会议录名称COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE
ISSN1865-0929
卷号1998
页码9-18
发表状态已发表
DOI10.1007/978-981-99-9109-9_2
摘要

In autonomous driving scenarios, the lighting conditions can often change rapidly and dramatically, leading to overly bright or dark environments. These abnormal light conditions can negatively impact the accuracy of object detection, potentially causing accidents and posing a threat to pedestrian and driver safety. To address this issue, this paper presents a method to mitigate the effect of abnormal light intensity on object detection in autonomous driving scenarios. We apply Multi-scale Retinex with Chromacity Preservation (MSRCP) processing to abnormal light images based on the YOLO model in order to recover lost information. Our method was evaluated on the publicly available BDD 100k dataset, and the results showed a significant improvement in performance under abnormal lighting conditions, Compared to images without any processing, Yolo-v3 model improve 9.59 % total mAP@[.5,.95], and Yolo-v4 model improves 10.86 %. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024.

关键词Automobile drivers Autonomous vehicles Lighting Object detection Object recognition Pedestrian safety Abnormal light Automatic driving Autonomous driving Chromacity preservations Driver's safety Light conditions Light intensity Lighting conditions Multi-scale Retinex Objects detection
会议名称8th International Symposium on Artificial Intelligence and Robotics, ISAIR 2023
出版地152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
会议地点Beijing, China
会议日期October 21, 2023 - October 23, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目open research fund of The State Key Laboratory for Management and Control of Complex Systems[20210110]
WOS研究方向Computer Science ; Robotics
WOS类目Computer Science, Artificial Intelligence ; Robotics
WOS记录号WOS:001300464300002
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20240215369844
EI主题词Image enhancement
EISSN1865-0937
EI分类号406.2 Roads and Streets ; 432 Highway Transportation ; 723.2 Data Processing and Image Processing ; 731.6 Robot Applications ; 912.4 Personnel ; 914.1 Accidents and Accident Prevention
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348706
专题信息科学与技术学院_本科生
通讯作者Yin, Zhuyun
作者单位
1.Shanghaitech University, Shanghai, China
2.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3.Zhongke Wyse (Beijing) Technology Co. Ltd., Beijing, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yin, Zhuyun,Guo, Lingyue. Enhanced Object Detection of Abnormal Light Based on Multi-scale Retinex with Chromacity Preservation[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:Springer Science and Business Media Deutschland GmbH,2024:9-18.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yin, Zhuyun]的文章
[Guo, Lingyue]的文章
百度学术
百度学术中相似的文章
[Yin, Zhuyun]的文章
[Guo, Lingyue]的文章
必应学术
必应学术中相似的文章
[Yin, Zhuyun]的文章
[Guo, Lingyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。