ShanghaiTech University Knowledge Management System
Enhanced Object Detection of Abnormal Light Based on Multi-scale Retinex with Chromacity Preservation | |
2024 | |
会议录名称 | COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE |
ISSN | 1865-0929 |
卷号 | 1998 |
页码 | 9-18 |
发表状态 | 已发表 |
DOI | 10.1007/978-981-99-9109-9_2 |
摘要 | In autonomous driving scenarios, the lighting conditions can often change rapidly and dramatically, leading to overly bright or dark environments. These abnormal light conditions can negatively impact the accuracy of object detection, potentially causing accidents and posing a threat to pedestrian and driver safety. To address this issue, this paper presents a method to mitigate the effect of abnormal light intensity on object detection in autonomous driving scenarios. We apply Multi-scale Retinex with Chromacity Preservation (MSRCP) processing to abnormal light images based on the YOLO model in order to recover lost information. Our method was evaluated on the publicly available BDD 100k dataset, and the results showed a significant improvement in performance under abnormal lighting conditions, Compared to images without any processing, Yolo-v3 model improve 9.59 % total mAP@[.5,.95], and Yolo-v4 model improves 10.86 %. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024. |
关键词 | Automobile drivers Autonomous vehicles Lighting Object detection Object recognition Pedestrian safety Abnormal light Automatic driving Autonomous driving Chromacity preservations Driver's safety Light conditions Light intensity Lighting conditions Multi-scale Retinex Objects detection |
会议名称 | 8th International Symposium on Artificial Intelligence and Robotics, ISAIR 2023 |
出版地 | 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE |
会议地点 | Beijing, China |
会议日期 | October 21, 2023 - October 23, 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | open research fund of The State Key Laboratory for Management and Control of Complex Systems[20210110] |
WOS研究方向 | Computer Science ; Robotics |
WOS类目 | Computer Science, Artificial Intelligence ; Robotics |
WOS记录号 | WOS:001300464300002 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20240215369844 |
EI主题词 | Image enhancement |
EISSN | 1865-0937 |
EI分类号 | 406.2 Roads and Streets ; 432 Highway Transportation ; 723.2 Data Processing and Image Processing ; 731.6 Robot Applications ; 912.4 Personnel ; 914.1 Accidents and Accident Prevention |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348706 |
专题 | 信息科学与技术学院_本科生 |
通讯作者 | Yin, Zhuyun |
作者单位 | 1.Shanghaitech University, Shanghai, China 2.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China 3.Zhongke Wyse (Beijing) Technology Co. Ltd., Beijing, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yin, Zhuyun,Guo, Lingyue. Enhanced Object Detection of Abnormal Light Based on Multi-scale Retinex with Chromacity Preservation[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:Springer Science and Business Media Deutschland GmbH,2024:9-18. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yin, Zhuyun]的文章 |
[Guo, Lingyue]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yin, Zhuyun]的文章 |
[Guo, Lingyue]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yin, Zhuyun]的文章 |
[Guo, Lingyue]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。