Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks
2022-01-21
状态已发表
摘要

This paper presents a problem in power networks that creates an exciting and yet challenging real-world scenario for application of multi-agent reinforcement learning (MARL). The emerging trend of decarbonisation is placing excessive stress on power distribution networks. Active voltage control is seen as a promising solution to relieve power congestion and improve voltage quality without extra hardware investment, taking advantage of the controllable apparatuses in the network, such as roof-top photovoltaics (PVs) and static var compensators (SVCs). These controllable apparatuses appear in a vast number and are distributed in a wide geographic area, making MARL a natural candidate. This paper formulates the active voltage control problem in the framework of Dec-POMDP and establishes an open-source environment. It aims to bridge the gap between the power community and the MARL community and be a drive force towards real-world applications of MARL algorithms. Finally, we analyse the special characteristics of the active voltage control problems that cause challenges (e.g. interpretability) for state-of-the-art MARL approaches, and summarise the potential directions.

DOIarXiv:2110.14300
相关网址查看原文
出处Arxiv
WOS记录号PPRN:12051787
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
资助项目Engineering and Physical Sciences Research Council of UK (EPSRC)[EP/S000909/1]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348434
专题信息科学与技术学院_博士生
作者单位
1.Imperial Coll London, London, England
2.Univ Bath, Bath, England
3.Shanghaitech Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Wang, Jianhong,Xu, Wangkun,Gu, Yunjie,et al. Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks. 2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Jianhong]的文章
[Xu, Wangkun]的文章
[Gu, Yunjie]的文章
百度学术
百度学术中相似的文章
[Wang, Jianhong]的文章
[Xu, Wangkun]的文章
[Gu, Yunjie]的文章
必应学术
必应学术中相似的文章
[Wang, Jianhong]的文章
[Xu, Wangkun]的文章
[Gu, Yunjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。