ShanghaiTech University Knowledge Management System
Predicting brain amyloid-β PET phenotypes with graph convolutional networks based on functional MRI and multi-level functional connectivity | |
2021-08-29 | |
状态 | 已发表 |
摘要 | The detection of amyloid-{beta} (A{beta}) deposition in the brain provides crucial evidence in the clinical diagnosis of Alzheimers disease (AD). However, the efficiency of the current PET-based brain A{beta} examination suffers from both coarse, visual inspection-based bi-class stratification and high scanning cost and risks. In this work, we explored the feasibility of using non-invasive functional magnetic resonance imaging (fMRI) to predict A{beta}-PET phenotypes in the AD continuum with graph learning on brain networks. First, three whole-brain A{beta}-PET phenotypes were identified through clustering and their association with clinical phenotypes were investigated. Second, both conventional and high-order functional connectivity (FC) networks were constructed using resting-state fMRI and the network topological architectures were learned with graph convolutional networks (GCNs) to predict such A{beta}-PET phenotypes. The experiment of A{beta}-PET phenotype prediction on 258 samples from the AD continuum showed that our algorithm achieved a high fMRI-to-PET prediction accuracy (78.8%). The results demonstrated the existence of distinguishable brain A{beta} deposition phenotypes in the AD continuum and the feasibility of using artificial intelligence and non-invasive brain imaging technique to approximate PET-based evaluations. It can be a promising technique for high-throughput screening of AD with less costs and restrictions. |
关键词 | Functional connectivity brain network amyloid β PET graph convolutional network |
语种 | 英语 |
DOI | 10.1101/2021.08.26.21262325 |
相关网址 | 查看原文 |
出处 | medRxiv |
收录类别 | PPRN.PPRN |
WOS记录号 | PPRN:8246834 |
WOS类目 | Geriatrics & Gerontology |
资助项目 | Guangzhou Science and Technology["202102010495","82027808","ZJ2018-ZD-012"] |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348430 |
专题 | 生物医学工程学院 物质科学与技术学院_硕士生 信息科学与技术学院_硕士生 生命科学与技术学院_PI研究组_窦坤组 |
通讯作者 | Zhang, H.; Shen, D. |
作者单位 | 1.Guangzhou Univ, Expt Ctr, Guangzhou, Peoples R China 2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 3.Inst Brain Intelligence Technol, Zhangjiang Lab, Shanghai, Peoples R China 4.United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China 5.Inst Brain Intelligence Technol, Zhangjiang Lab, Shanghai 201204, Peoples R China 6.Shanghai Tech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China |
推荐引用方式 GB/T 7714 | Li, C.,Liu, M.,Xia, J.,et al. Predicting brain amyloid-β PET phenotypes with graph convolutional networks based on functional MRI and multi-level functional connectivity. 2021. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, C.]的文章 |
[Liu, M.]的文章 |
[Xia, J.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, C.]的文章 |
[Liu, M.]的文章 |
[Xia, J.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, C.]的文章 |
[Liu, M.]的文章 |
[Xia, J.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。