Predicting brain amyloid-β PET phenotypes with graph convolutional networks based on functional MRI and multi-level functional connectivity
2021-08-29
状态已发表
摘要The detection of amyloid-{beta} (A{beta}) deposition in the brain provides crucial evidence in the clinical diagnosis of Alzheimers disease (AD). However, the efficiency of the current PET-based brain A{beta} examination suffers from both coarse, visual inspection-based bi-class stratification and high scanning cost and risks. In this work, we explored the feasibility of using non-invasive functional magnetic resonance imaging (fMRI) to predict A{beta}-PET phenotypes in the AD continuum with graph learning on brain networks. First, three whole-brain A{beta}-PET phenotypes were identified through clustering and their association with clinical phenotypes were investigated. Second, both conventional and high-order functional connectivity (FC) networks were constructed using resting-state fMRI and the network topological architectures were learned with graph convolutional networks (GCNs) to predict such A{beta}-PET phenotypes. The experiment of A{beta}-PET phenotype prediction on 258 samples from the AD continuum showed that our algorithm achieved a high fMRI-to-PET prediction accuracy (78.8%). The results demonstrated the existence of distinguishable brain A{beta} deposition phenotypes in the AD continuum and the feasibility of using artificial intelligence and non-invasive brain imaging technique to approximate PET-based evaluations. It can be a promising technique for high-throughput screening of AD with less costs and restrictions.
关键词Functional connectivity brain network amyloid β PET graph convolutional network
语种英语
DOI10.1101/2021.08.26.21262325
相关网址查看原文
出处medRxiv
收录类别PPRN.PPRN
WOS记录号PPRN:8246834
WOS类目Geriatrics & Gerontology
资助项目Guangzhou Science and Technology["202102010495","82027808","ZJ2018-ZD-012"]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348430
专题生物医学工程学院
物质科学与技术学院_硕士生
信息科学与技术学院_硕士生
生命科学与技术学院_PI研究组_窦坤组
通讯作者Zhang, H.; Shen, D.
作者单位
1.Guangzhou Univ, Expt Ctr, Guangzhou, Peoples R China
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
3.Inst Brain Intelligence Technol, Zhangjiang Lab, Shanghai, Peoples R China
4.United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China
5.Inst Brain Intelligence Technol, Zhangjiang Lab, Shanghai 201204, Peoples R China
6.Shanghai Tech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Li, C.,Liu, M.,Xia, J.,et al. Predicting brain amyloid-β PET phenotypes with graph convolutional networks based on functional MRI and multi-level functional connectivity. 2021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, C.]的文章
[Liu, M.]的文章
[Xia, J.]的文章
百度学术
百度学术中相似的文章
[Li, C.]的文章
[Liu, M.]的文章
[Xia, J.]的文章
必应学术
必应学术中相似的文章
[Li, C.]的文章
[Liu, M.]的文章
[Xia, J.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1101@2021.08.26.21262325.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。