消息
×
loading..
Wyner-Ziv Gradient Compression for Federated Learning
2021-11-16
状态已发表
摘要

Due to limited communication resources at the client and a massive number of model parameters, large-scale distributed learning tasks suffer from communication bottleneck. Gradient compression is an effective method to reduce communication load by transmitting compressed gradients. Motivated by the fact that in the scenario of stochastic gradients descent, gradients between adjacent rounds may have a high correlation since they wish to learn the same model, this paper proposes a practical gradient compression scheme for federated learning, which uses historical gradients to compress gradients and is based on Wyner-Ziv coding but without any probabilistic assumption. We also implement our gradient quantization method on the real dataset, and the performance of our method is better than the previous schemes.

关键词federated learning side information gradient compression
DOIarXiv:2111.08277
相关网址查看原文
出处Arxiv
WOS记录号PPRN:11958153
WOS类目Computer Science, Artificial Intelligence
资助项目National Nature Science Foundation of China (NSFC) under Grant[61901267]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348424
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_吴幼龙组
信息科学与技术学院_硕士生
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liang, Kai,Zhong, Huiru,Chen, Haoning,et al. Wyner-Ziv Gradient Compression for Federated Learning. 2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Kai]的文章
[Zhong, Huiru]的文章
[Chen, Haoning]的文章
百度学术
百度学术中相似的文章
[Liang, Kai]的文章
[Zhong, Huiru]的文章
[Chen, Haoning]的文章
必应学术
必应学术中相似的文章
[Liang, Kai]的文章
[Zhong, Huiru]的文章
[Chen, Haoning]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。