| |||||||
ShanghaiTech University Knowledge Management System
Adaptive Multi-User Channel Estimation Based on Contrastive Feature Learning | |
2023-03-06 | |
状态 | 已发表 |
摘要 | Correlation exploitation is essential for efficient multi-user channel estimation (MUCE) in massive MIMO systems. However, the existing works either rely on presumed strong correlation or learn the correlation through large amount of labeled data, which are difficult to acquire in a real system. In this paper, we propose an adaptive MUCE algorithm based on contrastive feature learning. The contrastive learning (CL) is used to automatically learn the similarity within channels by extracting the channel state information (CSI) features based on location information. The similar features will be fed into the downstream network to explore the strong correlations among CSI features to improve the MUCE performance with a small number of labeled data. Simulation results show that the contrastive feature learning can enhance the overall MUCE performance with high training efficiency. |
关键词 | Contrastive learning multi-user channel estimation feature extraction |
DOI | arXiv:2303.02960 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:43545573 |
WOS类目 | Engineering, Electrical& Electronic |
资助项目 | National Natural Science Foundation of China(NSFC)[62101331] |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348291 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_廉黎祥组 |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Yihan,Lian, Lixiang. Adaptive Multi-User Channel Estimation Based on Contrastive Feature Learning. 2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xu, Yihan]的文章 |
[Lian, Lixiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xu, Yihan]的文章 |
[Lian, Lixiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xu, Yihan]的文章 |
[Lian, Lixiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。