A Deep Reinforcement Learning Approach to Efficient Distributed Optimization
2023-11-15
状态已发表
摘要

distributed optimization, the practical problem-solving performance is essentially sensitive to algorithm selection, parameter setting, problem type and data pattern. Thus, it is often laborious to acquire a highly efficient method for a given specific problem. In this paper, we propose a learning-based method to achieve efficient distributed optimization over networked systems. Specifically, a deep reinforcement learning (DRL) framework is developed for adaptive configuration within a parameterized unifying algorithmic form, which incorporates an abundance of first-order and second-order optimization al-gorithms that can be implemented in a decentralized fashion. We exploit the local consensus and objective information to represent the regularities of problem instances and trace the solving progress, which constitute the states observed by an RL agent. The framework is trained using Proximal Policy Optimization (PPO) on a number of practical problem instances of similar structures yet different problem data. Experiments on various smooth and non-smooth classes of objective functions demonstrate that our proposed learning-based method outper-forms several state-of-the-art distributed optimization algorithms in terms of convergence speed and solution accuracy.

关键词Distributed optimization reinforcement learning learning to optimize proximal policy optimization
DOIarXiv:2311.08827
相关网址查看原文
出处Arxiv
WOS记录号PPRN:86174425
WOS类目Mathematics
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348085
专题信息科学与技术学院
信息科学与技术学院_PI研究组_陆疌组
信息科学与技术学院_硕士生
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Daokuan,Lu, Jie. A Deep Reinforcement Learning Approach to Efficient Distributed Optimization. 2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Daokuan]的文章
[Lu, Jie]的文章
百度学术
百度学术中相似的文章
[Zhu, Daokuan]的文章
[Lu, Jie]的文章
必应学术
必应学术中相似的文章
[Zhu, Daokuan]的文章
[Lu, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。