| |||||||
ShanghaiTech University Knowledge Management System
Cross-modal and Cross-domain Knowledge Transfer for Label-free 3D Segmentation | |
2023-10-16 | |
状态 | 已发表 |
摘要 | Current state-of-the-art point cloud-based perception methods usually rely on large-scale labeled data, which requires expensive manual annotations. A natural option is to explore the unsupervised methodology for 3D perception tasks. However, such methods often face substantial performance-drop difficulties. Fortunately, we found that there exist amounts of image-based datasets and an alternative can be proposed, i.e., transferring the knowledge in the 2D images to 3D point clouds. Specifically, we propose a novel approach for the challenging cross-modal and cross-domain adaptation task by fully exploring the relationship between images and point clouds and designing effective feature alignment strategies. Without any 3D labels, our method achieves state-of-the-art performance for 3D point cloud semantic segmentation on SemanticKITTI by using the knowledge of KITTI360 and GTA5, compared to existing unsupervised and weakly-supervised baselines. |
关键词 | Point Cloud Semantic Segmentation Unsupervised Domain Adaptation Cross-modal Transfer Learning |
DOI | arXiv:2309.10649 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:85054067 |
WOS类目 | Computer Science, Software Engineering |
资助项目 | NSFC[ |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348008 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_马月昕 |
作者单位 | 1.City Univ Hong Kong, Hong Kong, Peoples R China 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 3.Chinese Univ Hong Kong, Hong Kong, Peoples R China 4.Australian Natl Univ, Coll Sci, Canberra, Australia |
推荐引用方式 GB/T 7714 | Zhang, Jingyu,Yang, Huitong,Wu, Dai-Jie,et al. Cross-modal and Cross-domain Knowledge Transfer for Label-free 3D Segmentation. 2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。