消息
×
loading..
Cross-modal and Cross-domain Knowledge Transfer for Label-free 3D Segmentation
2023-10-16
状态已发表
摘要

Current state-of-the-art point cloud-based perception methods usually rely on large-scale labeled data, which requires expensive manual annotations. A natural option is to explore the unsupervised methodology for 3D perception tasks. However, such methods often face substantial performance-drop difficulties. Fortunately, we found that there exist amounts of image-based datasets and an alternative can be proposed, i.e., transferring the knowledge in the 2D images to 3D point clouds. Specifically, we propose a novel approach for the challenging cross-modal and cross-domain adaptation task by fully exploring the relationship between images and point clouds and designing effective feature alignment strategies. Without any 3D labels, our method achieves state-of-the-art performance for 3D point cloud semantic segmentation on SemanticKITTI by using the knowledge of KITTI360 and GTA5, compared to existing unsupervised and weakly-supervised baselines.

关键词Point Cloud Semantic Segmentation Unsupervised Domain Adaptation Cross-modal Transfer Learning
DOIarXiv:2309.10649
相关网址查看原文
出处Arxiv
WOS记录号PPRN:85054067
WOS类目Computer Science, Software Engineering
资助项目NSFC[
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348008
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_马月昕
作者单位
1.City Univ Hong Kong, Hong Kong, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
3.Chinese Univ Hong Kong, Hong Kong, Peoples R China
4.Australian Natl Univ, Coll Sci, Canberra, Australia
推荐引用方式
GB/T 7714
Zhang, Jingyu,Yang, Huitong,Wu, Dai-Jie,et al. Cross-modal and Cross-domain Knowledge Transfer for Label-free 3D Segmentation. 2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Jingyu]的文章
[Yang, Huitong]的文章
[Wu, Dai-Jie]的文章
百度学术
百度学术中相似的文章
[Zhang, Jingyu]的文章
[Yang, Huitong]的文章
[Wu, Dai-Jie]的文章
必应学术
必应学术中相似的文章
[Zhang, Jingyu]的文章
[Yang, Huitong]的文章
[Wu, Dai-Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。