Beam-wise dose composition learning for head and neck cancer dose prediction in radiotherapy
2024-02
发表期刊MEDICAL IMAGE ANALYSIS (IF:10.7[JCR-2023],11.9[5-Year])
ISSN1361-8415
EISSN1361-8423
卷号92
发表状态已发表
DOI10.1016/j.media.2023.103045
摘要

Automatic and accurate dose distribution prediction plays an important role in radiotherapy plan. Although previous methods can provide promising performance, most methods did not consider beam-shaped radiation of treatment delivery in clinical practice. This leads to inaccurate prediction, especially on beam paths. To solve this problem, we propose a beam-wise dose composition learning (BDCL) method for dose prediction in the context of head and neck (H&N) radiotherapy plan. Specifically, a global dose network is first utilized to predict coarse dose values in the whole-image space. Then, we propose to generate individual beam masks to decompose the coarse dose distribution into multiple field doses, called beam voters, which are further refined by a subsequent beam dose network and reassembled to form the final dose distribution. In particular, we design an overlap consistency module to keep the similarity of high-level features in overlapping regions between different beam voters. To make the predicted dose distribution more consistent with the real radiotherapy plan, we also propose a dose-volume histogram (DVH) calibration process to facilitate feature learning in some clinically concerned regions. We further apply an edge enhancement procedure to enhance the learning of the extracted feature from the dose falloff regions. Experimental results on a public H&N cancer dataset from the AAPM OpenKBP challenge show that our method achieves superior performance over other state-of-the-art approaches by significant margins. Source code is released at https://github.com/TL9792/BDCLDosePrediction. © 2023

关键词Diseases Graphic methods Radiotherapy Beam path Beam-wise dose learning Clinical practices Dose distributions Dose prediction Dose-volume histograms Head and neck Head-and-neck cancer Learning methods Performance
收录类别EI
语种英语
出版者Elsevier B.V.
EI入藏号20235015214549
EI主题词Forecasting
EI分类号461.6 Medicine and Pharmacology ; 622.3 Radioactive Material Applications
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347915
专题生物医学工程学院
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
通讯作者Shen, Dinggang
作者单位
1.School of Biomedical Engineering, ShanghaiTech University, Shanghai; 201210, China;
2.School of Biomedical Engineering, Southern Medical University, Guangzhou; 510515, China;
3.Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy; NY; 12180, United States;
4.Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai; 200230, China;
5.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Teng, Lin,Wang, Bin,Xu, Xuanang,et al. Beam-wise dose composition learning for head and neck cancer dose prediction in radiotherapy[J]. MEDICAL IMAGE ANALYSIS,2024,92.
APA Teng, Lin.,Wang, Bin.,Xu, Xuanang.,Zhang, Jiadong.,Mei, Lanzhuju.,...&Shen, Dinggang.(2024).Beam-wise dose composition learning for head and neck cancer dose prediction in radiotherapy.MEDICAL IMAGE ANALYSIS,92.
MLA Teng, Lin,et al."Beam-wise dose composition learning for head and neck cancer dose prediction in radiotherapy".MEDICAL IMAGE ANALYSIS 92(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Teng, Lin]的文章
[Wang, Bin]的文章
[Xu, Xuanang]的文章
百度学术
百度学术中相似的文章
[Teng, Lin]的文章
[Wang, Bin]的文章
[Xu, Xuanang]的文章
必应学术
必应学术中相似的文章
[Teng, Lin]的文章
[Wang, Bin]的文章
[Xu, Xuanang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。