ShanghaiTech University Knowledge Management System
Grouped Multi-Task Learning with Hidden Tasks Enhancement | |
2023-09-28 | |
会议录名称 | FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS |
ISSN | 0922-6389 |
卷号 | 372 |
页码 | 1164-1171 |
DOI | 10.3233/FAIA230392 |
摘要 | In multi-task learning (MTL), multiple prediction tasks are learned jointly, such that generalization performance is improved by transferring information across the tasks. However, not all tasks are related, and training unrelated tasks together can worsen the prediction performance because of the phenomenon of negative transfer. To overcome this problem, we propose a novel MTL method that can robustly group correlated tasks into clusters and allow useful information to be transferred only within clusters. The proposed method is based on the assumption that the task clusters lie in the low-rank subspaces of the parameter space, and the number of them and their dimensions are both unknown. By applying subspace clustering to task parameters, parameter learning and task grouping can be done in a unified framework. To relieve the error induced by the basic linear learner and robustify the model, the effect of hidden tasks is exploited. Moreover, the framework is extended to a multi-layer architecture so as to progressively extract hierarchical subspace structures of tasks, which helps to further improve generalization. The optimization algorithm is proposed, and its effectiveness is validated by experimental results on both synthetic and real-world datasets. © 2023 The Authors. |
会议录编者/会议主办者 | Amazon Alexa ; APTIV ; et al. ; Hewlett Packard ; IDEAS ; Software Force |
关键词 | Clustering algorithms Learning systems Machine learning Generalization performance Learning methods Multitask learning Parameter learning Parameter spaces Prediction performance Prediction tasks Subspace clustering Unified framework Within clusters |
会议名称 | 26th European Conference on Artificial Intelligence, ECAI 2023 |
会议地点 | Krakow, Poland |
会议日期 | September 30, 2023 - October 4, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IOS Press BV |
EI入藏号 | 20234515035050 |
EI主题词 | Linearization |
EISSN | 1879-8314 |
EI分类号 | 723.4 Artificial Intelligence ; 903.1 Information Sources and Analysis |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346435 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_郑杰组 信息科学与技术学院_PI研究组_孙露组 |
作者单位 | 1.ShanghaiTech University, China; 2.Hokkaido University, Japan |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Jin, Jiachun,Wang, Jiankun,Sun, Lu,et al. Grouped Multi-Task Learning with Hidden Tasks Enhancement[C]//Amazon Alexa, APTIV, et al., Hewlett Packard, IDEAS, Software Force:IOS Press BV,2023:1164-1171. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。