Grouped Multi-Task Learning with Hidden Tasks Enhancement
2023-09-28
会议录名称FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS
ISSN0922-6389
卷号372
页码1164-1171
DOI10.3233/FAIA230392
摘要In multi-task learning (MTL), multiple prediction tasks are learned jointly, such that generalization performance is improved by transferring information across the tasks. However, not all tasks are related, and training unrelated tasks together can worsen the prediction performance because of the phenomenon of negative transfer. To overcome this problem, we propose a novel MTL method that can robustly group correlated tasks into clusters and allow useful information to be transferred only within clusters. The proposed method is based on the assumption that the task clusters lie in the low-rank subspaces of the parameter space, and the number of them and their dimensions are both unknown. By applying subspace clustering to task parameters, parameter learning and task grouping can be done in a unified framework. To relieve the error induced by the basic linear learner and robustify the model, the effect of hidden tasks is exploited. Moreover, the framework is extended to a multi-layer architecture so as to progressively extract hierarchical subspace structures of tasks, which helps to further improve generalization. The optimization algorithm is proposed, and its effectiveness is validated by experimental results on both synthetic and real-world datasets. © 2023 The Authors.
会议录编者/会议主办者Amazon Alexa ; APTIV ; et al. ; Hewlett Packard ; IDEAS ; Software Force
关键词Clustering algorithms Learning systems Machine learning Generalization performance Learning methods Multitask learning Parameter learning Parameter spaces Prediction performance Prediction tasks Subspace clustering Unified framework Within clusters
会议名称26th European Conference on Artificial Intelligence, ECAI 2023
会议地点Krakow, Poland
会议日期September 30, 2023 - October 4, 2023
URL查看原文
收录类别EI
语种英语
出版者IOS Press BV
EI入藏号20234515035050
EI主题词Linearization
EISSN1879-8314
EI分类号723.4 Artificial Intelligence ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346435
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_郑杰组
信息科学与技术学院_PI研究组_孙露组
作者单位
1.ShanghaiTech University, China;
2.Hokkaido University, Japan
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Jin, Jiachun,Wang, Jiankun,Sun, Lu,et al. Grouped Multi-Task Learning with Hidden Tasks Enhancement[C]//Amazon Alexa, APTIV, et al., Hewlett Packard, IDEAS, Software Force:IOS Press BV,2023:1164-1171.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jin, Jiachun]的文章
[Wang, Jiankun]的文章
[Sun, Lu]的文章
百度学术
百度学术中相似的文章
[Jin, Jiachun]的文章
[Wang, Jiankun]的文章
[Sun, Lu]的文章
必应学术
必应学术中相似的文章
[Jin, Jiachun]的文章
[Wang, Jiankun]的文章
[Sun, Lu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3233@FAIA230392.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。