Temporal Collection and Distribution for Referring Video Object Segmentation
2023-10-06
会议录名称2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
ISSN1550-5499
发表状态已发表
DOI10.1109/ICCV51070.2023.01418
摘要Referring video object segmentation aims to segment a referent throughout a video sequence according to a natural language expression. It requires aligning the natural language expression with the objects’ motions and their dynamic associations at the global video level but segmenting objects at the frame level. To achieve this goal, we propose to simultaneously maintain a global referent token and a sequence of object queries, where the former is responsible for capturing video-level referent according to the language expression, while the latter serves to better locate and segment objects with each frame. Furthermore, to explicitly capture object motions and spatial-temporal cross-modal reasoning over objects, we propose a novel temporal collection-distribution mechanism for interacting between the global referent token and object queries. Specifically, the temporal collection mechanism collects global information for the referent token from object queries to the temporal motions to the language expression. In turn, the temporal distribution first distributes the referent token to the referent sequence across all frames and then performs efficient cross-frame reasoning between the referent sequence and object queries in every frame. Experimental results show that our method outperforms state-of-the-art methods on all benchmarks consistently and significantly.
关键词Computer vision Motion segmentation Natural languages Video sequences Dynamics Object segmentation Benchmark testing
会议地点Paris, France
会议日期1-6 Oct. 2023
URL查看原文
语种英语
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346078
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_杨思蓓组
通讯作者Yang SB(杨思蓓)
作者单位
信息科学与技术学院
推荐引用方式
GB/T 7714
Tang JJ,Zheng G,Yang SB. Temporal Collection and Distribution for Referring Video Object Segmentation[C],2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tang JJ(唐嘉晋)]的文章
[Zheng G(郑舸)]的文章
[Yang SB(杨思蓓)]的文章
百度学术
百度学术中相似的文章
[Tang JJ(唐嘉晋)]的文章
[Zheng G(郑舸)]的文章
[Yang SB(杨思蓓)]的文章
必应学术
必应学术中相似的文章
[Tang JJ(唐嘉晋)]的文章
[Zheng G(郑舸)]的文章
[Yang SB(杨思蓓)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。