ShanghaiTech University Knowledge Management System
An Energy-efficient and Fast KNN Search Accelerator for Large Scale Point Cloud Map | |
2023-12-07 | |
会议录名称 | 2023 30TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS)
![]() |
发表状态 | 已发表 |
DOI | 10.1109/ICECS58634.2023.10382817 |
摘要 | KNN (K-Nearest-Neighbors) search has been widely used in LiDAR (Light Detection and Ranging) localization and mapping algorithms in smart vehicles. However, the complex outdoor environment and the strict battery limitations of smart vehicles introduce a great challenge to develop an efficient KNN implementation for large scale point cloud maps. Unfortunately, existing KNN accelerators perform inefficiently in reducing search regions and transferring point cloud maps. To solve this issue, we propose a fast and energy-efficient KNN accelerator with two techniques. First, we propose a novel search technique (NSVS, nearest-sub-voxel-selection) to reduce the redundant search region based on the neighboring distribution (dense or sparse) of the query point in the search structure. Second, we design an adaptive data transfer technique to efficiently transfer point cloud maps with different data reuse ratio from external memory to accelerator via multi large-bit-width ports with random access mode or on-chip cache with sequential FIFO access mode. Experimental results show that our proposed KNN search accelerator achieves 9.1 times faster than state-of-the-art KNN implementations on FPGA. Moreover, energy efficiency results show that our proposed accelerator is 11.5 and 13.5 times higher than the state-of-the-art FPGA and GPU implementations. © 2023 IEEE. |
会议录编者/会议主办者 | Baykon Industrial Weighing Systems ; et al. ; IEEE ; IEEE Circuits and Systems Society (CAS) ; Isik University, Faculty of Engineering ; Savronik |
关键词 | K-nearest-neighbor search FPGA large scale point cloud map 3D LiDAR localization and mapping smart vehicles |
会议名称 | 30th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2023 |
会议地点 | Istanbul, Turkiye |
会议日期 | 4-7 Dec. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240515478397 |
EI主题词 | Field programmable gate arrays (FPGA) |
EI分类号 | 525.2 Energy Conservation ; 716.2 Radar Systems and Equipment ; 721.2 Logic Elements ; 741.3 Optical Devices and Systems ; 921.5 Optimization Techniques |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345965 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_哈亚军组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
共同第一作者 | Hao Sun |
通讯作者 | Yajun Ha |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China 3.University of Chinese Academy of Sciences, Beijing, China 4.Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yunhao Hu,Hao Sun,Chunxu Guo,et al. An Energy-efficient and Fast KNN Search Accelerator for Large Scale Point Cloud Map[C]//Baykon Industrial Weighing Systems, et al., IEEE, IEEE Circuits and Systems Society (CAS), Isik University, Faculty of Engineering, Savronik:Institute of Electrical and Electronics Engineers Inc.,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yunhao Hu]的文章 |
[Hao Sun]的文章 |
[Chunxu Guo]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yunhao Hu]的文章 |
[Hao Sun]的文章 |
[Chunxu Guo]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yunhao Hu]的文章 |
[Hao Sun]的文章 |
[Chunxu Guo]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。