An Energy-efficient and Fast KNN Search Accelerator for Large Scale Point Cloud Map
2023-12-07
会议录名称2023 30TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS)
发表状态已发表
DOI10.1109/ICECS58634.2023.10382817
摘要KNN (K-Nearest-Neighbors) search has been widely used in LiDAR (Light Detection and Ranging) localization and mapping algorithms in smart vehicles. However, the complex outdoor environment and the strict battery limitations of smart vehicles introduce a great challenge to develop an efficient KNN implementation for large scale point cloud maps. Unfortunately, existing KNN accelerators perform inefficiently in reducing search regions and transferring point cloud maps. To solve this issue, we propose a fast and energy-efficient KNN accelerator with two techniques. First, we propose a novel search technique (NSVS, nearest-sub-voxel-selection) to reduce the redundant search region based on the neighboring distribution (dense or sparse) of the query point in the search structure. Second, we design an adaptive data transfer technique to efficiently transfer point cloud maps with different data reuse ratio from external memory to accelerator via multi large-bit-width ports with random access mode or on-chip cache with sequential FIFO access mode. Experimental results show that our proposed KNN search accelerator achieves 9.1 times faster than state-of-the-art KNN implementations on FPGA. Moreover, energy efficiency results show that our proposed accelerator is 11.5 and 13.5 times higher than the state-of-the-art FPGA and GPU implementations. © 2023 IEEE.
会议录编者/会议主办者Baykon Industrial Weighing Systems ; et al. ; IEEE ; IEEE Circuits and Systems Society (CAS) ; Isik University, Faculty of Engineering ; Savronik
关键词K-nearest-neighbor search FPGA large scale point cloud map 3D LiDAR localization and mapping smart vehicles
会议名称30th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2023
会议地点Istanbul, Turkiye
会议日期4-7 Dec. 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240515478397
EI主题词Field programmable gate arrays (FPGA)
EI分类号525.2 Energy Conservation ; 716.2 Radar Systems and Equipment ; 721.2 Logic Elements ; 741.3 Optical Devices and Systems ; 921.5 Optimization Techniques
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345965
专题信息科学与技术学院
信息科学与技术学院_PI研究组_哈亚军组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
共同第一作者Hao Sun
通讯作者Yajun Ha
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
3.University of Chinese Academy of Sciences, Beijing, China
4.Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yunhao Hu,Hao Sun,Chunxu Guo,et al. An Energy-efficient and Fast KNN Search Accelerator for Large Scale Point Cloud Map[C]//Baykon Industrial Weighing Systems, et al., IEEE, IEEE Circuits and Systems Society (CAS), Isik University, Faculty of Engineering, Savronik:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yunhao Hu]的文章
[Hao Sun]的文章
[Chunxu Guo]的文章
百度学术
百度学术中相似的文章
[Yunhao Hu]的文章
[Hao Sun]的文章
[Chunxu Guo]的文章
必应学术
必应学术中相似的文章
[Yunhao Hu]的文章
[Hao Sun]的文章
[Chunxu Guo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。