HC-Net: Hybrid Classification Network for Automatic Periodontal Disease Diagnosis
2023
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14225 LNCS
页码54-63
发表状态已发表
DOI10.1007/978-3-031-43987-2_6
摘要

Accurate periodontal disease classification from panoramic X-ray images is of great significance for efficient clinical diagnosis and treatment. It has been a challenging task due to the subtle evidence in radiography. Recent methods attempt to estimate bone loss on these images to classify periodontal diseases, relying on the radiographic manual annotations to supervise segmentation or keypoint detection. However, these radiographic annotations are inconsistent with the clinical golden standard of probing measurements and thus can lead to measurement errors and unstable classifications. In this paper, we propose a novel hybrid classification framework, HC-Net, for accurate periodontal disease classification from X-ray images, which consists of three components, i.e., tooth-level classification, patient-level classification, and a learnable adaptive noisy-OR gate. Specifically, in the tooth-level classification, we first introduce instance segmentation to capture each tooth, and then classify the periodontal disease in the tooth level. As for the patient level, we exploit a multi-task strategy to jointly learn patient-level classification and classification activation map (CAM) that reflects the confidence of local lesion areas upon the panoramic X-ray image. Eventually, the adaptive noisy-OR gate obtains a hybrid classification by integrating predictions from both levels. Extensive experiments on the dataset collected from real-world clinics demonstrate that our proposed HC-Net achieves state-of-the-art performance in periodontal disease classification and shows great application potential. Our code is available at https://github.com/ShanghaiTech-IMPACT/Periodental_Disease. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

关键词Computer aided diagnosis Image classification Image segmentation X ray radiography Bone loss Classification networks Clinical diagnosis Clinical treatments Disease classification Disease diagnosis Hybrid classification Noisy-OR gate Periodontal disease X-ray image
会议名称26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Vancouver, BC, Canada
会议日期October 8, 2023 - October 12, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001109635100006
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20234314956212
EI主题词Classification (of information)
EISSN1611-3349
EI分类号461.1 Biomedical Engineering ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345823
专题生物医学工程学院
信息科学与技术学院
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_崔智铭组
通讯作者Tonetti, Maurizio; Shen, Dinggang
作者单位
1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
3.Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Shanghai, Peoples R China
4.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
5.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
第一作者单位生物医学工程学院;  信息科学与技术学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Mei, Lanzhuju,Fang, Yu,Cui, Zhiming,et al. HC-Net: Hybrid Classification Network for Automatic Periodontal Disease Diagnosis[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2023:54-63.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Mei, Lanzhuju]的文章
[Fang, Yu]的文章
[Cui, Zhiming]的文章
百度学术
百度学术中相似的文章
[Mei, Lanzhuju]的文章
[Fang, Yu]的文章
[Cui, Zhiming]的文章
必应学术
必应学术中相似的文章
[Mei, Lanzhuju]的文章
[Fang, Yu]的文章
[Cui, Zhiming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。