ShanghaiTech University Knowledge Management System
HC-Net: Hybrid Classification Network for Automatic Periodontal Disease Diagnosis | |
2023 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 14225 LNCS |
页码 | 54-63 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-43987-2_6 |
摘要 | Accurate periodontal disease classification from panoramic X-ray images is of great significance for efficient clinical diagnosis and treatment. It has been a challenging task due to the subtle evidence in radiography. Recent methods attempt to estimate bone loss on these images to classify periodontal diseases, relying on the radiographic manual annotations to supervise segmentation or keypoint detection. However, these radiographic annotations are inconsistent with the clinical golden standard of probing measurements and thus can lead to measurement errors and unstable classifications. In this paper, we propose a novel hybrid classification framework, HC-Net, for accurate periodontal disease classification from X-ray images, which consists of three components, i.e., tooth-level classification, patient-level classification, and a learnable adaptive noisy-OR gate. Specifically, in the tooth-level classification, we first introduce instance segmentation to capture each tooth, and then classify the periodontal disease in the tooth level. As for the patient level, we exploit a multi-task strategy to jointly learn patient-level classification and classification activation map (CAM) that reflects the confidence of local lesion areas upon the panoramic X-ray image. Eventually, the adaptive noisy-OR gate obtains a hybrid classification by integrating predictions from both levels. Extensive experiments on the dataset collected from real-world clinics demonstrate that our proposed HC-Net achieves state-of-the-art performance in periodontal disease classification and shows great application potential. Our code is available at https://github.com/ShanghaiTech-IMPACT/Periodental_Disease. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023. |
关键词 | Computer aided diagnosis Image classification Image segmentation X ray radiography Bone loss Classification networks Clinical diagnosis Clinical treatments Disease classification Disease diagnosis Hybrid classification Noisy-OR gate Periodontal disease X-ray image |
会议名称 | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Vancouver, BC, Canada |
会议日期 | October 8, 2023 - October 12, 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001109635100006 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20234314956212 |
EI主题词 | Classification (of information) |
EISSN | 1611-3349 |
EI分类号 | 461.1 Biomedical Engineering ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 903.1 Information Sources and Analysis |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345823 |
专题 | 生物医学工程学院 信息科学与技术学院 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_崔智铭组 |
通讯作者 | Tonetti, Maurizio; Shen, Dinggang |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 3.Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Shanghai, Peoples R China 4.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China 5.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China |
第一作者单位 | 生物医学工程学院; 信息科学与技术学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Mei, Lanzhuju,Fang, Yu,Cui, Zhiming,et al. HC-Net: Hybrid Classification Network for Automatic Periodontal Disease Diagnosis[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2023:54-63. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。