ShanghaiTech University Knowledge Management System
Detection-Free Pipeline for Cervical Cancer Screening of Whole Slide Images | |
2023 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 14225 LNCS |
页码 | 243-252 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-43987-2_24 |
摘要 | Cervical cancer is a significant health burden worldwide, and computer-aided diagnosis (CAD) pipelines have the potential to improve diagnosis efficiency and treatment outcomes. However, traditional CAD pipelines have limitations due to the requirement of a detection model trained on a large annotated dataset, which can be expensive and time-consuming. They also have a clear performance limit and low data utilization efficiency. To address these issues, we introduce a two-stage detection-free pipeline, incorporating pooling transformer and MoCo pretraining strategies, that optimizes data utilization for whole slide images (WSIs) while relying solely on sample-level diagnosis labels for training. The experimental results demonstrate the effectiveness of our approach, with performance scaling up as the amount of data increases. Overall, our novel pipeline has the potential to fully utilize massive data in WSI classification and can significantly improve cancer diagnosis and treatment. By reducing the reliance on expensive data labeling and detection models, our approach could enable more widespread and cost-effective implementation of CAD pipelines in clinical settings. Our code and model is available at https://github.com/thebestannie/Detection-free-MICCAI2023. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023. |
关键词 | Computer aided diagnosis Cost effectiveness Diseases Efficiency Image classification Large dataset Cancer screening Cervical cancers Contrastive learning Data utilization Detection models Detection-free Images classification Pathology image classification Treatment outcomes Whole slide images |
会议名称 | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Vancouver, BC, Canada |
会议日期 | October 8, 2023 - October 12, 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001109635100024 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20234314956841 |
EI主题词 | Pipelines |
EISSN | 1611-3349 |
EI分类号 | 461.1 Biomedical Engineering ; 619.1 Pipe, Piping and Pipelines ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 911.2 Industrial Economics ; 913.1 Production Engineering |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345802 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_王乾组 |
通讯作者 | Wang, Qian |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Cao, Maosong,Fei, Manman,Cai, Jiangdong,et al. Detection-Free Pipeline for Cervical Cancer Screening of Whole Slide Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2023:243-252. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。