Detection-Free Pipeline for Cervical Cancer Screening of Whole Slide Images
2023
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14225 LNCS
页码243-252
发表状态已发表
DOI10.1007/978-3-031-43987-2_24
摘要

Cervical cancer is a significant health burden worldwide, and computer-aided diagnosis (CAD) pipelines have the potential to improve diagnosis efficiency and treatment outcomes. However, traditional CAD pipelines have limitations due to the requirement of a detection model trained on a large annotated dataset, which can be expensive and time-consuming. They also have a clear performance limit and low data utilization efficiency. To address these issues, we introduce a two-stage detection-free pipeline, incorporating pooling transformer and MoCo pretraining strategies, that optimizes data utilization for whole slide images (WSIs) while relying solely on sample-level diagnosis labels for training. The experimental results demonstrate the effectiveness of our approach, with performance scaling up as the amount of data increases. Overall, our novel pipeline has the potential to fully utilize massive data in WSI classification and can significantly improve cancer diagnosis and treatment. By reducing the reliance on expensive data labeling and detection models, our approach could enable more widespread and cost-effective implementation of CAD pipelines in clinical settings. Our code and model is available at https://github.com/thebestannie/Detection-free-MICCAI2023. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

关键词Computer aided diagnosis Cost effectiveness Diseases Efficiency Image classification Large dataset Cancer screening Cervical cancers Contrastive learning Data utilization Detection models Detection-free Images classification Pathology image classification Treatment outcomes Whole slide images
会议名称26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Vancouver, BC, Canada
会议日期October 8, 2023 - October 12, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001109635100024
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20234314956841
EI主题词Pipelines
EISSN1611-3349
EI分类号461.1 Biomedical Engineering ; 619.1 Pipe, Piping and Pipelines ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 911.2 Industrial Economics ; 913.1 Production Engineering
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345802
专题生物医学工程学院
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_王乾组
通讯作者Wang, Qian
作者单位
1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
2.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Cao, Maosong,Fei, Manman,Cai, Jiangdong,et al. Detection-Free Pipeline for Cervical Cancer Screening of Whole Slide Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2023:243-252.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cao, Maosong]的文章
[Fei, Manman]的文章
[Cai, Jiangdong]的文章
百度学术
百度学术中相似的文章
[Cao, Maosong]的文章
[Fei, Manman]的文章
[Cai, Jiangdong]的文章
必应学术
必应学术中相似的文章
[Cao, Maosong]的文章
[Fei, Manman]的文章
[Cai, Jiangdong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。