ShanghaiTech University Knowledge Management System
Learning to Beamform for Dual-Functional MIMO Radar-Communication Systems | |
2023-05-28 | |
会议录名称 | ICC 2023 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS |
ISSN | 1938-1883 |
卷号 | 2023-May |
页码 | 3572-3577 |
发表状态 | 已发表 |
DOI | 10.1109/ICC45041.2023.10279159 |
摘要 | Dual-functional radar-communication (DFRC) attracts extensive attention recently, given its potential to integrate the sensing and communication processes for enhancing the spectrum efficiency and hardware utilization. Due to the co-channel interference, effective resource allocation is a critical issue for DFRC, which typically relies on the accurate channel estimation. However, the conventional estimate-then-optimize algorithms may not work well due to inaccurate channel estimation, high computation complexity, and inconsistent optimization goals. This paper considers a DRFC system with multiuser multiple-input-multiple-output (MIMO) communications and MIMO radar sensing, where an end-to-end learning algorithm is developed to tackle the aforementioned issues. We formulate an optimization problem to maximize the communication performance subject to the radar sensing constraints, via optimizing both the transmit and receive beamforming matrices, while considering channel estimation in the loop. To tackle this challenging problem, we exploit the universal approximation property of the neural network to develop an end-to-end learning algorithm to directly learn the mapping between the pilot signals and the beamforming matrices, and meanwhile appropriately design the loss function to account for the radar sensing constraints. Simulations show that our proposed algorithm achieves a much greater communication performance than the baseline algorithm, while guaranteeing the same sensing performance. © 2023 IEEE. |
关键词 | Array signal processing Simulation Neural networks Channel estimation Radar Approximation algorithms Sensors |
会议名称 | 2023 IEEE International Conference on Communications, ICC 2023 |
会议地点 | Rome, Italy |
会议日期 | 28 May-1 June 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234815114452 |
EI主题词 | Learning algorithms |
EI分类号 | 711.2 Electromagnetic Waves in Relation to Various Structures ; 716.1 Information Theory and Signal Processing ; 716.2 Radar Systems and Equipment ; 723.4.2 Machine Learning ; 921 Mathematics |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/343611 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yifei Zhao,Zixin Wang,Zhibin Wang,et al. Learning to Beamform for Dual-Functional MIMO Radar-Communication Systems[C]:Institute of Electrical and Electronics Engineers Inc.,2023:3572-3577. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。