Learning to Beamform for Dual-Functional MIMO Radar-Communication Systems
2023-05-28
会议录名称ICC 2023 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS
ISSN1938-1883
卷号2023-May
页码3572-3577
发表状态已发表
DOI10.1109/ICC45041.2023.10279159
摘要Dual-functional radar-communication (DFRC) attracts extensive attention recently, given its potential to integrate the sensing and communication processes for enhancing the spectrum efficiency and hardware utilization. Due to the co-channel interference, effective resource allocation is a critical issue for DFRC, which typically relies on the accurate channel estimation. However, the conventional estimate-then-optimize algorithms may not work well due to inaccurate channel estimation, high computation complexity, and inconsistent optimization goals. This paper considers a DRFC system with multiuser multiple-input-multiple-output (MIMO) communications and MIMO radar sensing, where an end-to-end learning algorithm is developed to tackle the aforementioned issues. We formulate an optimization problem to maximize the communication performance subject to the radar sensing constraints, via optimizing both the transmit and receive beamforming matrices, while considering channel estimation in the loop. To tackle this challenging problem, we exploit the universal approximation property of the neural network to develop an end-to-end learning algorithm to directly learn the mapping between the pilot signals and the beamforming matrices, and meanwhile appropriately design the loss function to account for the radar sensing constraints. Simulations show that our proposed algorithm achieves a much greater communication performance than the baseline algorithm, while guaranteeing the same sensing performance. © 2023 IEEE.
关键词Array signal processing Simulation Neural networks Channel estimation Radar Approximation algorithms Sensors
会议名称2023 IEEE International Conference on Communications, ICC 2023
会议地点Rome, Italy
会议日期28 May-1 June 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20234815114452
EI主题词Learning algorithms
EI分类号711.2 Electromagnetic Waves in Relation to Various Structures ; 716.1 Information Theory and Signal Processing ; 716.2 Radar Systems and Equipment ; 723.4.2 Machine Learning ; 921 Mathematics
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/343611
专题信息科学与技术学院
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yifei Zhao,Zixin Wang,Zhibin Wang,et al. Learning to Beamform for Dual-Functional MIMO Radar-Communication Systems[C]:Institute of Electrical and Electronics Engineers Inc.,2023:3572-3577.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yifei Zhao]的文章
[Zixin Wang]的文章
[Zhibin Wang]的文章
百度学术
百度学术中相似的文章
[Yifei Zhao]的文章
[Zixin Wang]的文章
[Zhibin Wang]的文章
必应学术
必应学术中相似的文章
[Yifei Zhao]的文章
[Zixin Wang]的文章
[Zhibin Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。