ShanghaiTech University Knowledge Management System
Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches | |
2023-11-01 | |
发表期刊 | SEMINARS IN CANCER BIOLOGY (IF:12.1[JCR-2023],13.2[5-Year]) |
ISSN | 1044-579X |
EISSN | 1096-3650 |
卷号 | 96 |
发表状态 | 已发表 |
DOI | 10.1016/j.semcancer.2023.09.001 |
摘要 | Breast cancer is a significant global health burden, with increasing morbidity and mortality worldwide. Early screening and accurate diagnosis are crucial for improving prognosis. Radiographic imaging modalities such as digital mammography (DM), digital breast tomosynthesis (DBT), magnetic resonance imaging (MRI), ultrasound (US), and nuclear medicine techniques, are commonly used for breast cancer assessment. And histopathology (HP) serves as the gold standard for confirming malignancy. Artificial intelligence (AI) technologies show great potential for quantitative representation of medical images to effectively assist in segmentation, diagnosis, and prognosis of breast cancer. In this review, we overview the recent advancements of AI technologies for breast cancer, including 1) improving image quality by data augmentation, 2) fast detection and segmentation of breast lesions and diagnosis of malignancy, 3) biological characterization of the cancer such as staging and subtyping by AI-based classification technologies, 4) prediction of clinical outcomes such as metastasis, treatment response, and survival by integrating multi-omics data. Then, we then summarize large-scale databases available to help train robust, generalizable, and reproducible deep learning models. Furthermore, we conclude the challenges faced by AI in real-world applications, including data curating, model interpretability, and practice regulations. Besides, we expect that clinical implementation of AI will provide important guidance for the patient-tailored management. |
关键词 | Breast cancer Artificial intelligence Deep learning |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Key R &D Program of Guang- dong Province, China[2021B0101420006] |
WOS研究方向 | Oncology |
WOS类目 | Oncology |
WOS记录号 | WOS:001079464700001 |
出版者 | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/343604 |
专题 | 生物医学工程学院 科技发展处 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Shi, Feng; Shen, Dinggang |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China 3.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhang, Jiadong,Wu, Jiaojiao,Zhou, Xiang Sean,et al. Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches[J]. SEMINARS IN CANCER BIOLOGY,2023,96. |
APA | Zhang, Jiadong,Wu, Jiaojiao,Zhou, Xiang Sean,Shi, Feng,&Shen, Dinggang.(2023).Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches.SEMINARS IN CANCER BIOLOGY,96. |
MLA | Zhang, Jiadong,et al."Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches".SEMINARS IN CANCER BIOLOGY 96(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。