Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches
2023-11-01
发表期刊SEMINARS IN CANCER BIOLOGY (IF:12.1[JCR-2023],13.2[5-Year])
ISSN1044-579X
EISSN1096-3650
卷号96
发表状态已发表
DOI10.1016/j.semcancer.2023.09.001
摘要

Breast cancer is a significant global health burden, with increasing morbidity and mortality worldwide. Early screening and accurate diagnosis are crucial for improving prognosis. Radiographic imaging modalities such as digital mammography (DM), digital breast tomosynthesis (DBT), magnetic resonance imaging (MRI), ultrasound (US), and nuclear medicine techniques, are commonly used for breast cancer assessment. And histopathology (HP) serves as the gold standard for confirming malignancy. Artificial intelligence (AI) technologies show great potential for quantitative representation of medical images to effectively assist in segmentation, diagnosis, and prognosis of breast cancer. In this review, we overview the recent advancements of AI technologies for breast cancer, including 1) improving image quality by data augmentation, 2) fast detection and segmentation of breast lesions and diagnosis of malignancy, 3) biological characterization of the cancer such as staging and subtyping by AI-based classification technologies, 4) prediction of clinical outcomes such as metastasis, treatment response, and survival by integrating multi-omics data. Then, we then summarize large-scale databases available to help train robust, generalizable, and reproducible deep learning models. Furthermore, we conclude the challenges faced by AI in real-world applications, including data curating, model interpretability, and practice regulations. Besides, we expect that clinical implementation of AI will provide important guidance for the patient-tailored management.

关键词Breast cancer Artificial intelligence Deep learning
URL查看原文
收录类别SCI
语种英语
资助项目Key R &D Program of Guang- dong Province, China[2021B0101420006]
WOS研究方向Oncology
WOS类目Oncology
WOS记录号WOS:001079464700001
出版者ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/343604
专题生物医学工程学院
科技发展处
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
通讯作者Shi, Feng; Shen, Dinggang
作者单位
1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
2.Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China
3.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Zhang, Jiadong,Wu, Jiaojiao,Zhou, Xiang Sean,et al. Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches[J]. SEMINARS IN CANCER BIOLOGY,2023,96.
APA Zhang, Jiadong,Wu, Jiaojiao,Zhou, Xiang Sean,Shi, Feng,&Shen, Dinggang.(2023).Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches.SEMINARS IN CANCER BIOLOGY,96.
MLA Zhang, Jiadong,et al."Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches".SEMINARS IN CANCER BIOLOGY 96(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiadong]的文章
[Wu, Jiaojiao]的文章
[Zhou, Xiang Sean]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiadong]的文章
[Wu, Jiaojiao]的文章
[Zhou, Xiang Sean]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiadong]的文章
[Wu, Jiaojiao]的文章
[Zhou, Xiang Sean]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。