Convolutional Neural Network-Based Moving Ground Target Classification Using Raw Seismic Waveforms as Input
2019-07-15
发表期刊IEEE SENSORS JOURNAL (IF:4.3[JCR-2023],4.2[5-Year])
ISSN1530-437X
卷号19期号:14页码:5751-5759
发表状态已发表
DOI10.1109/JSEN.2019.2907051
摘要Seismic vibration signatures are strong criteria to recognize moving ground targets in unattended ground sensor (UGS) systems. However, it is a challenging task because of the complexity of seismic waves and their high dependency on the underlying geology. In order to approach this problem, this paper proposes a novel method called "VibCNN" based on convolutional neural networks (CNNs). Instead of preprocessing signals to extract features, the proposed model takes raw waveforms as input. Another characteristic of the model is that it can handle very short input, which only contains 1024 sample points. The experimental results show that the model yields performance much better than benchmarks and generalizes quite well across different geological types. To further improve the performance of VibCNN, we introduce two auxiliary input channels based on seismic signals and add each auxiliary channel to the input layer of VibCNN separately. Furthermore, we explore different fusion rules of the auxiliary channels at three levels: sample level, feature level, and decision level. The best result achieves relative improvement of 2.05%. In addition, data augmentation for seismic data has not been deeply investigated yet. Thus, we conduce a data augmentation experiment to explore the influence of different augmentation techniques on the performance of the model. The appropriate augmentation improves the accuracy of the model from 93.44% to 95.20%.
关键词Seismic sensor raw waveform convolutional neural network target classification signal-to-noise ratio standard deviation data augmentation
URL查看原文
收录类别EI ; SCIE ; SCI
语种英语
资助项目Science and Technology on Microsystem Laboratory[614280401020617]
WOS研究方向Engineering ; Instruments & Instrumentation ; Physics
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Physics, Applied
WOS记录号WOS:000472604000048
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20192707140641
EI主题词Benchmarking ; Convolution ; Geology ; Neural networks ; Seismic waves ; Signal processing ; Signal to noise ratio ; Unattended sensors
EI分类号Geology:481.1 ; Seismology:484 ; Earthquake Measurements and Analysis:484.1 ; Information Theory and Signal Processing:716.1 ; Control Instrumentation:732.2
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/34156
专题信息科学与技术学院_硕士生
通讯作者Li, Baoqing
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Sci & Technol Microsyst Lab, Shanghai 201800, Peoples R China
2.ArcSoft Inc, Shanghai 200040, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yan,Cheng, Xiaoliu,Zhou, Peng,et al. Convolutional Neural Network-Based Moving Ground Target Classification Using Raw Seismic Waveforms as Input[J]. IEEE SENSORS JOURNAL,2019,19(14):5751-5759.
APA Wang, Yan,Cheng, Xiaoliu,Zhou, Peng,Li, Baoqing,&Yuan, Xiaobing.(2019).Convolutional Neural Network-Based Moving Ground Target Classification Using Raw Seismic Waveforms as Input.IEEE SENSORS JOURNAL,19(14),5751-5759.
MLA Wang, Yan,et al."Convolutional Neural Network-Based Moving Ground Target Classification Using Raw Seismic Waveforms as Input".IEEE SENSORS JOURNAL 19.14(2019):5751-5759.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yan]的文章
[Cheng, Xiaoliu]的文章
[Zhou, Peng]的文章
百度学术
百度学术中相似的文章
[Wang, Yan]的文章
[Cheng, Xiaoliu]的文章
[Zhou, Peng]的文章
必应学术
必应学术中相似的文章
[Wang, Yan]的文章
[Cheng, Xiaoliu]的文章
[Zhou, Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。