S-Wave Accelerates Optimization-based Photoacoustic Image Reconstruction in vivo
2023
发表期刊ULTRASOUND IN MEDICINE AND BIOLOGY (IF:2.4[JCR-2023],2.9[5-Year])
ISSN0301-5629
EISSN1879-291X
卷号50期号:1页码:18-27
DOI10.1016/j.ultrasmedbio.2023.07.014
摘要Objective: Photoacoustic imaging has undergone rapid development in recent years. To simulate photoacoustic imaging on a computer, the most popular MATLAB toolbox currently used for the forward projection process is k-Wave. However, k-Wave suffers from significant computation time. Here we propose a straightforward simulation approach based on superposed Wave (s-Wave) to accelerate photoacoustic simulation. Methods: In this study, we consider the initial pressure distribution as a collection of individual pixels. By obtaining standard sensor data from a single pixel beforehand, we can easily manipulate the phase and amplitude of the sensor data for specific pixels using loop and multiplication operators. The effectiveness of this approach is validated through an optimization-based reconstruction algorithm. Results: The results reveal significantly reduced computation time compared with k-Wave. Particularly in a sparse 3-D configuration, s-Wave exhibits a speed improvement >2000 times compared with k-Wave. In terms of optimization-based image reconstruction, in vivo imaging results reveal that using the s-Wave method yields images highly similar to those obtained using k-Wave, while reducing the reconstruction time by approximately 50 times. Conclusion: Proposed here is an accelerated optimization-based algorithm for photoacoustic image reconstruction, using the fast s-Wave forward projection simulation. Our method achieves substantial time savings, particularly in sparse system configurations. Future work will focus on further optimizing the algorithm and expanding its applicability to a broader range of photoacoustic imaging scenarios. © 2023
关键词MATLAB Photoacoustic effect Pixels Shear waves Computation time Images reconstruction Imaging simulation Optimisations Optimization-based reconstruction Photo-acoustic imaging Photoacoustic image Photoacoustic imaging simulation Sensors data Superposed wave
收录类别EI
语种英语
出版者Elsevier Inc.
EI入藏号20234114869282
EI主题词Image reconstruction
EI分类号723.5 Computer Applications ; 741.1 Light/Optics ; 751.1 Acoustic Waves ; 921 Mathematics ; 931.1 Mechanics
原始文献类型Article in Press
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/340979
专题信息科学与技术学院
信息科学与技术学院_PI研究组_高飞组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Gao, Feng; Gao, Fei
作者单位
1.Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
2.Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China;
3.Shanghai Clinical Research and Trial Center, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shen, Yuting,Zhang, Jiadong,Jiang, Daohuai,et al. S-Wave Accelerates Optimization-based Photoacoustic Image Reconstruction in vivo[J]. ULTRASOUND IN MEDICINE AND BIOLOGY,2023,50(1):18-27.
APA Shen, Yuting.,Zhang, Jiadong.,Jiang, Daohuai.,Gao, Zijian.,Zheng, Yuwei.,...&Gao, Fei.(2023).S-Wave Accelerates Optimization-based Photoacoustic Image Reconstruction in vivo.ULTRASOUND IN MEDICINE AND BIOLOGY,50(1),18-27.
MLA Shen, Yuting,et al."S-Wave Accelerates Optimization-based Photoacoustic Image Reconstruction in vivo".ULTRASOUND IN MEDICINE AND BIOLOGY 50.1(2023):18-27.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shen, Yuting]的文章
[Zhang, Jiadong]的文章
[Jiang, Daohuai]的文章
百度学术
百度学术中相似的文章
[Shen, Yuting]的文章
[Zhang, Jiadong]的文章
[Jiang, Daohuai]的文章
必应学术
必应学术中相似的文章
[Shen, Yuting]的文章
[Zhang, Jiadong]的文章
[Jiang, Daohuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。