Ultrafast Charge Transfer Enhancement in CdS-MoS2 via a Linker Molecule
2023-09-22
发表期刊JOURNAL OF PHYSICAL CHEMISTRY C (IF:3.3[JCR-2023],3.5[5-Year])
ISSN1932-7447
EISSN1932-7455
卷号127期号:39页码:19668-19674
发表状态已发表
DOI10.1021/acs.jpcc.3c05037
摘要Hybrid systems, which take advantage of the low material dimensionality, have great potential for designing nanoscale devices. Quantum dots can be combined with two-dimensional (2D) monolayers to achieve success in photovoltaics and water splitting. In such colloidal systems, ligand molecules play an important role in stabilizing the nanostructures, but their role in heterostructure device performance is still poorly understood. In this study, time-dependent density functional theory is employed to explore how the cysteine ligand affects the charge transfer across the CdS-MoS2 heterostructure, at the ultrafast time scale. We show that the cysteine ligand enhances charge transfer, not only by coupling the CdS and MoS2 electronic states across the junction but also through enhanced electron-phonon coupling, where the carrier energy is quickly dissipated to high-frequency local vibrational modes arising from the lighter ligand atoms. This enhanced electron-phonon mechanism associated with the ligand is expected to be broadly applicable to most solution-based nanodevices.
关键词Amino acids Charge transfer Density functional theory Electron-phonon interactions Hybrid systems II-VI semiconductors Layered semiconductors Ligands Molecules Molybdenum compounds Nanostructured materials Semiconductor quantum dots Sols Colloidal system Device performance Heterostructure devices Ligand molecules Linker molecules Nanoscale device Photovoltaics Two-dimensional Ultra-fast Water splitting
URL查看原文
收录类别SCI ; EI
语种英语
资助项目U.S. National Science Foundation (NSF)[DMREF-1627028] ; U.S. DOE[DE-SC0002623] ; NERSC under DOE Contract[DE-AC02-05CH11231]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:001071400800001
出版者AMER CHEMICAL SOC
EI入藏号20234415004204
EI主题词Cadmium sulfide
EI分类号712.1 Semiconducting Materials ; 714.2 Semiconductor Devices and Integrated Circuits ; 761 Nanotechnology ; 801.4 Physical Chemistry ; 802.2 Chemical Reactions ; 804 Chemical Products Generally ; 804.1 Organic Compounds ; 921 Mathematics ; 922.1 Probability Theory ; 931.3 Atomic and Molecular Physics ; 931.4 Quantum Theory ; Quantum Mechanics ; 933 Solid State Physics ; 933.1 Crystalline Solids
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/340934
专题物质科学与技术学院
物质科学与技术学院_博士生
通讯作者West, Damien
作者单位
1.Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
3.ShanghaiTech Univ, Ctr Transformat Sci, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Ciesler, Matthew,Wang, Han,Zhang, Shengbai,et al. Ultrafast Charge Transfer Enhancement in CdS-MoS2 via a Linker Molecule[J]. JOURNAL OF PHYSICAL CHEMISTRY C,2023,127(39):19668-19674.
APA Ciesler, Matthew,Wang, Han,Zhang, Shengbai,&West, Damien.(2023).Ultrafast Charge Transfer Enhancement in CdS-MoS2 via a Linker Molecule.JOURNAL OF PHYSICAL CHEMISTRY C,127(39),19668-19674.
MLA Ciesler, Matthew,et al."Ultrafast Charge Transfer Enhancement in CdS-MoS2 via a Linker Molecule".JOURNAL OF PHYSICAL CHEMISTRY C 127.39(2023):19668-19674.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ciesler, Matthew]的文章
[Wang, Han]的文章
[Zhang, Shengbai]的文章
百度学术
百度学术中相似的文章
[Ciesler, Matthew]的文章
[Wang, Han]的文章
[Zhang, Shengbai]的文章
必应学术
必应学术中相似的文章
[Ciesler, Matthew]的文章
[Wang, Han]的文章
[Zhang, Shengbai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1021@acs.jpcc.3c05037.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。