ShanghaiTech University Knowledge Management System
CATENOID LIMITS OF SINGLY PERIODIC MINIMAL SURFACES WITH SCHERK-TYPE ENDS | |
2023-07-01 | |
发表期刊 | PACIFIC JOURNAL OF MATHEMATICS |
ISSN | 0030-8730 |
EISSN | 1945-5844 |
卷号 | 325期号:1 |
发表状态 | 已发表 |
DOI | 10.2140/pjm.2023.325.11 |
摘要 | We construct families of embedded, singly periodic minimal surfaces of any genus g in the quotient with any even number 2n > 2 of almost parallel Scherk ends. A surface in such a family looks like n parallel planes connected by n - 1 + g small catenoid necks. In the limit, the family converges to an n-sheeted vertical plane with n - 1 + g singular points, termed nodes, in the quotient. For the nodes to open up into catenoid necks, their locations must satisfy a set of balance equations whose solutions are given by the roots of Stieltjes polynomials. |
关键词 | minimal surfaces saddle towers node opening |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Deutsche Forschungsgemeinschaft[398759432] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:001076864300002 |
出版者 | MATHEMATICAL SCIENCES PUBLISHERS |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/340924 |
专题 | 数学科学研究所 数学科学研究所_PI研究组(P)_陈浩组 |
通讯作者 | Chen, Hao |
作者单位 | 1.ShanghaiTech Univ, Inst Math Sci, Pudong, Shanghai, Peoples R China 2.Indiana Univ South Bend, Dept Math Sci, South Bend, IN USA 3.Penn State Harrisburg, Sch Sci Engn & Technol, Harrisburg, PA USA |
第一作者单位 | 数学科学研究所 |
通讯作者单位 | 数学科学研究所 |
第一作者的第一单位 | 数学科学研究所 |
推荐引用方式 GB/T 7714 | Chen, Hao,Connor, Peter,Li, Kevin. CATENOID LIMITS OF SINGLY PERIODIC MINIMAL SURFACES WITH SCHERK-TYPE ENDS[J]. PACIFIC JOURNAL OF MATHEMATICS,2023,325(1). |
APA | Chen, Hao,Connor, Peter,&Li, Kevin.(2023).CATENOID LIMITS OF SINGLY PERIODIC MINIMAL SURFACES WITH SCHERK-TYPE ENDS.PACIFIC JOURNAL OF MATHEMATICS,325(1). |
MLA | Chen, Hao,et al."CATENOID LIMITS OF SINGLY PERIODIC MINIMAL SURFACES WITH SCHERK-TYPE ENDS".PACIFIC JOURNAL OF MATHEMATICS 325.1(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。