A Self-Supervised Learning Approach for High-Resolution Diffuse Optical Tomography Using Neural Fields
2023
会议录名称PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING
ISSN0277-786X
卷号12753
发表状态已发表
DOI10.1117/12.2691305
摘要

Diffuse optical tomography (DOT) has shown promise in biomedical research, such as breast cancer diagnostics and brain imaging, by reconstructing hidden objects within scattering media. However, the conventional reconstruction framework faces challenges due to the highly ill-posed inverse problem of reconstructing optical properties. This work introduces a novel approach, neural field-based diffuse optical tomography (NeuDOT), which leverages a multi-layer perceptron (MLP) to learn an implicit function that maps spatial coordinates to their corresponding optical absorption coefficients. The performance of the NeuDOT method has been evaluated through several phantom studies, demonstrating its potential for high spatial resolution DOT reconstruction. © 2023 SPIE.

关键词Brain mapping Inverse problems Light absorption Light scattering Optical properties Optical tomography Supervised learning Adaptive meshing Biomedical research Brain imaging Breast cancer diagnostics Diagnostic imaging Diffuse optical tomography High resolution Images reconstruction Neural fields Supervised learning approaches
会议名称2nd Conference on Biomedical Photonics and Cross-Fusion, BPC 2023
会议地点Shanghai, China
会议日期June 8, 2023 - June 10, 2023
收录类别EI
语种英语
出版者SPIE
EI入藏号20233814733637
EI主题词Image reconstruction
EISSN1996-756X
EI分类号461.1 Biomedical Engineering ; 741.1 Light/Optics ; 741.3 Optical Devices and Systems ; 746 Imaging Techniques
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/335599
专题信息科学与技术学院
物质科学与技术学院
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
物质科学与技术学院_PI研究组_朱幸俊组
信息科学与技术学院_PI研究组_任无畏组
数学科学研究所_PI研究组(P)_姜嘉骅组
通讯作者Jiang, Jiahua; Yu, Jingyi; Ren, Wuwei
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China;
2.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China;
3.Institute of Mathematical Science, ShanghaiTech University, Shanghai; 201210, China;
4.School of Mathematics, University of Birmingham, Edgbaston; B15 2QN, United Kingdom
第一作者单位信息科学与技术学院
通讯作者单位上海科技大学;  信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Li, Linlin,Shen, Siyuan,Gao, Shengyu,et al. A Self-Supervised Learning Approach for High-Resolution Diffuse Optical Tomography Using Neural Fields[C]:SPIE,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Linlin]的文章
[Shen, Siyuan]的文章
[Gao, Shengyu]的文章
百度学术
百度学术中相似的文章
[Li, Linlin]的文章
[Shen, Siyuan]的文章
[Gao, Shengyu]的文章
必应学术
必应学术中相似的文章
[Li, Linlin]的文章
[Shen, Siyuan]的文章
[Gao, Shengyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。