Laser-induced coherent longitudinal acoustics phonons in thin films observed by ultrafast optical reflectivity and ultrafast x-ray diffraction
2023-09-14
发表期刊JOURNAL OF APPLIED PHYSICS (IF:2.7[JCR-2023],2.6[5-Year])
ISSN0021-8979
EISSN1089-7550
卷号134期号:10
发表状态已发表
DOI10.1063/5.0161873
摘要

Femtosecond laser excitation of crystal materials can produce coherent longitudinal acoustic phonons (CLAPs), which possess the capability to interact with various quasiparticles and influence their dynamics. The manipulation of CLAPs' behavior is thus of significant interest for potential applications, particularly in achieving ultrafast modulations of material properties. In this study, we present our findings on the propagation of laser-induced CLAPs at thin-film interfaces and heterojunctions using ultrafast optical reflectivity and ultrafast x-ray diffraction measurements. We observe that CLAPs can efficiently propagate from a LaMnO3 thin-film to its SrTi O 3 substrate due to the matching of their acoustic impedance, and the oscillation period increases from 54 to 105 GHz. In contrast, in ultrafast x-ray diffraction experiments, we discover that CLAPs are partially confined within an Au (111) thin film due to the mismatch of acoustic impedance with the substrates, leading to an oscillation period of 122 ps. However, interestingly, when examining L a 0.7 C a 0.175 S r 0.125 Mn O 3 / B a 0.5 S r 0.5 Ti O 3 bilayers, no oscillations are observed due to the favorable impedance matching between the layers. Our findings demonstrate that acoustic impedance can serve as an effective means to control coherent phonons in nanometer-thin films and may also play a crucial role in phonon engineering at interfaces or heterostructures. © 2023 Author(s).

关键词Acoustic impedance Binary alloys Heterojunctions Lanthanum compounds Laser excitation Phonons Reflection Substrates X ray diffraction Crystal material Femtosecond laser excitation Laser induced Longitudinal acoustic phonons Optical reflectivity Oscillation periods Quasiparticles Thin-films Ultra-fast Ultrafast x-ray diffraction
收录类别EI
语种英语
出版者American Institute of Physics Inc.
EI入藏号20233814763589
EI主题词Thin films
EI分类号714.2 Semiconductor Devices and Integrated Circuits ; 744.9 Laser Applications ; 751.2 Acoustic Properties of Materials ; 801.4 Physical Chemistry
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/335592
专题物质科学与技术学院
物质科学与技术学院_PI研究组_翟晓芳组
物质科学与技术学院_PI研究组_李润泽组
通讯作者Li, Runze; Rentzepis, Peter M.
作者单位
1.Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai; 200240, China;
2.School of Mathematics, Physics and Statistics, Shanghai Polytechnic University, Shanghai; 201209, China;
3.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China;
4.Department of Electrical and Computer Engineering, Texas A&M University, College Station; TX; 77843, United States
通讯作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Yu, Junxiao,Zhang, Haijuan,Lv, Zefang,et al. Laser-induced coherent longitudinal acoustics phonons in thin films observed by ultrafast optical reflectivity and ultrafast x-ray diffraction[J]. JOURNAL OF APPLIED PHYSICS,2023,134(10).
APA Yu, Junxiao.,Zhang, Haijuan.,Lv, Zefang.,Chen, Conglong.,Li, Runze.,...&Rentzepis, Peter M..(2023).Laser-induced coherent longitudinal acoustics phonons in thin films observed by ultrafast optical reflectivity and ultrafast x-ray diffraction.JOURNAL OF APPLIED PHYSICS,134(10).
MLA Yu, Junxiao,et al."Laser-induced coherent longitudinal acoustics phonons in thin films observed by ultrafast optical reflectivity and ultrafast x-ray diffraction".JOURNAL OF APPLIED PHYSICS 134.10(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yu, Junxiao]的文章
[Zhang, Haijuan]的文章
[Lv, Zefang]的文章
百度学术
百度学术中相似的文章
[Yu, Junxiao]的文章
[Zhang, Haijuan]的文章
[Lv, Zefang]的文章
必应学术
必应学术中相似的文章
[Yu, Junxiao]的文章
[Zhang, Haijuan]的文章
[Lv, Zefang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。