Self-Supervised High-Dimentional Magnetic Resonance Image Denoising Using Super-Resolved Single Noisy Image
2023-04-18
会议录名称2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
卷号2023-April
发表状态已发表
DOI10.1109/ISBI53787.2023.10230690
摘要Denoising of magnetic resonance image (MRI) is a critical step in MRI image processing and analysis. With the advantage of not requiring paired noisy-clean images for training, self-supervised denoising methods are emerging as competitive alternatives to supervised denoising methods in MRI denoising. However, current self-supervised image denoising methods are not effective enough for MRI. In this work, we propose Noise2SR-M (N2SR-M), a self supervised denoising method for MR images, which is more efficient for high-dimensional MR images. N2SR-M is designed for training with paired noisy data of different sizes divided from a single high-dimensional noisy input image. Our N2SR-M model is able to utilize the redundant information from the additional image dimension to generate noisy image pairs for the denoising task. With the combination of additional dimension constraint and the effectiveness of SR method based training image pair generation, our model is more efficient for denoising high-dimensional MR images. The quantitative and qualitative improvements in blood oxygenation level dependent (BOLD) imaging denoising task demonstrate that N2SR-M successfully restores detailed image contents and removes tiny structural noise and artifacts from noise-corrupted high-dimensional MRI. Moreover, the denoised BOLD image also induces more efficient R2∗ image computation. © 2023 IEEE.
会议录编者/会议主办者Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain
关键词Self-supervised MRI Denoising BOLD
会议名称20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Cartagena, Colombia
会议日期18-21 April 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China["62071299","61901256","91949120"]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001062050500367
出版者IEEE Computer Society
EI入藏号20233914806138
EI主题词Image denoising
EISSN1945-8452
EI分类号701.2 Magnetism: Basic Concepts and Phenomena ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333439
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_张玉瑶组
生物医学工程学院
生物医学工程学院_PI研究组_张雷组(生医工)
通讯作者Jiang, Changhao
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
3.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jiang, Changhao,Tian, Xuanyu,Li, Yanbin,et al. Self-Supervised High-Dimentional Magnetic Resonance Image Denoising Using Super-Resolved Single Noisy Image[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Changhao]的文章
[Tian, Xuanyu]的文章
[Li, Yanbin]的文章
百度学术
百度学术中相似的文章
[Jiang, Changhao]的文章
[Tian, Xuanyu]的文章
[Li, Yanbin]的文章
必应学术
必应学术中相似的文章
[Jiang, Changhao]的文章
[Tian, Xuanyu]的文章
[Li, Yanbin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。