ShanghaiTech University Knowledge Management System
Self-Supervised High-Dimentional Magnetic Resonance Image Denoising Using Super-Resolved Single Noisy Image | |
2023-04-18 | |
会议录名称 | 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
![]() |
ISSN | 1945-7928 |
卷号 | 2023-April |
发表状态 | 已发表 |
DOI | 10.1109/ISBI53787.2023.10230690 |
摘要 | Denoising of magnetic resonance image (MRI) is a critical step in MRI image processing and analysis. With the advantage of not requiring paired noisy-clean images for training, self-supervised denoising methods are emerging as competitive alternatives to supervised denoising methods in MRI denoising. However, current self-supervised image denoising methods are not effective enough for MRI. In this work, we propose Noise2SR-M (N2SR-M), a self supervised denoising method for MR images, which is more efficient for high-dimensional MR images. N2SR-M is designed for training with paired noisy data of different sizes divided from a single high-dimensional noisy input image. Our N2SR-M model is able to utilize the redundant information from the additional image dimension to generate noisy image pairs for the denoising task. With the combination of additional dimension constraint and the effectiveness of SR method based training image pair generation, our model is more efficient for denoising high-dimensional MR images. The quantitative and qualitative improvements in blood oxygenation level dependent (BOLD) imaging denoising task demonstrate that N2SR-M successfully restores detailed image contents and removes tiny structural noise and artifacts from noise-corrupted high-dimensional MRI. Moreover, the denoised BOLD image also induces more efficient R2∗ image computation. © 2023 IEEE. |
会议录编者/会议主办者 | Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain |
关键词 | Self-supervised MRI Denoising BOLD |
会议名称 | 20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Cartagena, Colombia |
会议日期 | 18-21 April 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62071299","61901256","91949120"] |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001062050500367 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233914806138 |
EI主题词 | Image denoising |
EISSN | 1945-8452 |
EI分类号 | 701.2 Magnetism: Basic Concepts and Phenomena ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333439 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_张玉瑶组 生物医学工程学院 生物医学工程学院_PI研究组_张雷组(生医工) |
通讯作者 | Jiang, Changhao |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 3.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jiang, Changhao,Tian, Xuanyu,Li, Yanbin,et al. Self-Supervised High-Dimentional Magnetic Resonance Image Denoising Using Super-Resolved Single Noisy Image[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。