Self-Supervised Arbitrary Scale Super-Resolution Framework for Anisotropic MRI
2023-04-18
会议录名称2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
卷号2023-April
发表状态已发表
DOI10.1109/ISBI53787.2023.10230678
摘要In this paper, we propose an efficient self-supervised arbitrary-scale super-resolution (SR) framework to reconstruct isotropic magnetic resonance (MR) images from anisotropic MRI inputs without involving external training data. The proposed framework builds a training dataset using "in-the-wild"anisotropic MR volumes with arbitrary image resolution. We then formulate the 3D volume SR task as a SR problem for 2D image slices. The anisotropic volume's high-resolution (HR) plane is used to build the HR-LR image pairs for model training. We further adapt the implicit neural representation (INR) network to implement the 2D arbitrary-scale image SR model. Finally, we leverage the well-trained proposed model to up-sample the 2D LR plane extracted from the anisotropic MR volumes to their HR views. The isotropic MR volumes thus can be reconstructed by stacking and averaging the generated HR slices. Our proposed framework has two major advantages: (1) It only involves the arbitrary-resolution anisotropic MR volumes, which greatly improves the model practicality in real MR imaging scenarios (e.g., clinical brain image acquisition); (2) The INR-based SR model enables arbitrary-scale image SR from the arbitrary-resolution input image, which significantly improves model training efficiency. We perform experiments on a simulated public adult brain dataset and a real collected 7T brain dataset. The results indicate that our current framework greatly outperforms two well-known self-supervised models for anisotropic MR image SR tasks. © 2023 IEEE.
会议录编者/会议主办者Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain
关键词MRI super-resolution self-supervised learning arbitrary scales implicit neural representation
会议名称20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
会议地点Cartagena, Colombia
会议日期18-21 April 2023
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20233914806126
EI主题词Magnetic resonance
EISSN1945-8452
EI分类号461.1 Biomedical Engineering ; 701.2 Magnetism: Basic Concepts and Phenomena ; 746 Imaging Techniques ; 931.2 Physical Properties of Gases, Liquids and Solids
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333438
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_张玉瑶组
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
3.Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
4.Central Research Institute, UIH Group, Shanghai, China
5.School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Haonan Zhang,Yuhan Zhang,Qing Wu,et al. Self-Supervised Arbitrary Scale Super-Resolution Framework for Anisotropic MRI[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain:IEEE Computer Society,2023.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Haonan Zhang]的文章
[Yuhan Zhang]的文章
[Qing Wu]的文章
百度学术
百度学术中相似的文章
[Haonan Zhang]的文章
[Yuhan Zhang]的文章
[Qing Wu]的文章
必应学术
必应学术中相似的文章
[Haonan Zhang]的文章
[Yuhan Zhang]的文章
[Qing Wu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ISBI53787.2023.10230678.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。